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Abstract 

The aim of this study was to provide an informed choice among two combinatory 

methods and GIS based MOLA module in IDRIS!® by comparing their performance in 

solving a hypothetical Multi-Objective Land use Assessment and Allocation (MOLAA) 

problem. Among the combinatory methods, Simulated Annealing and Tabu Search 

algorithms were chosen for study. The application of Simulated Annealing has already 

been demonstrated in solving a MOLAA problem but Tabu Search has not been used to 

a MOLAA problem before. 

The Kioloa Region of New South Wales, Australia was chosen for designing a 

hypothetical MOLAA problem due to availability and access to the digital datasets at 

the Australian National University. The MOLAA problem was formulated for 

accomplishing six land use objectives by allocating the area to four land use types, that 

is, conservation, agriculture, forestry and development, using altogether 1 7 criteria, 

including 16 factors and one constraint. The criteria maps were classified in ordinal, 

continuous and fuzzy scale and combined by using Weighted Linear Combination to 

produce land use suitability models for each land use type. The ordinal and continuous 

land use suitability models were used in solving the problem by applying the MOLA 

module. In order to apply the combinatory methods, all three land use suitability 

models, that is, ordinal, continuous and fuzzy, were transferred to cost suitability 

models where the lowest cost value represented the best suitability and the highest cost 

value represented the lowest suitability in the interval data set. Three initial input 

solutions generated by the random, cheapest and greatest difference methods were used 

for optimising by applying both algorithms. 

Both combinatory methods maximized overall land use suitability with better spatial 

compactness by allocating each land unit with the most suitable land use with the lowest 

cost. At the land use level, MOLA exhibited a bias towards land uses with lower area 

requirement and allocates more suitable land units to them. Though the MOLA module 

is highly efficient in solving large grid MOLAA problem, the combinatory methods 

deliver a solution close to the near-optimal solution with better compactness in an 

acceptable time frame. Hence, the combinatory methods have been shown to be 

appropriate choice to solve MOLAA problems. 
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The solutions were not significantly different at their mean cost functions between 

Simulated Annealing and Tahu Search at the appropriate parameters. Among the cost 

suitability models, both algorithms performed better in the fuzzy models in the large 

MOLAA problem. The initial input solution influenced the performance of the 

algorithms. The algorithms produced better results in the cheapest and greatest 

difference initial input solution in the medium grid MOLAA problem whereas the cost 

function was more improved using the random initial input solution in the large grid. 

Although there is no significant difference in the mean cost functions between 

Simulated Annealing and Tahu Search, the previous one is found more efficient in 

solving large grid MOLAA problem. For the same values of compactness factors, 

Simulated Annealing produced more spatially compact land use allocation than Tahu 

Search. Thus decision makers/land use planners or consultants could obtain a better 

decision alternative to a land use allocation problem by applying Simulated Annealing 

with the recommended appropriate annealing schedule and initial input cost suitability 

model. 

This study recommends further research in Tahu Search to find an effective attribute for 

a Tahu list, to be applied to a MO LAA problem. 
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Glossary 

Annealing schedule It comprises all the parameters used in Simulated Annealing 
such as cooling function, cooling rate, initial temperature, 
number of swaps per step and number of steps. 

Cold swap The swapping of land uses between two cells decreases the 
cost function value. 

Combinatory methods Those optimisation methods, which can solve combinatorial 
problems in an acceptable time frame. 

Compactness function A function used in the cost minimization function in order to 
enhance spatial compactness. 

Cooling function It is a mathematical rule or formula to reduce the initial 
control parameter or temperature in Simulated Annealing. 

Cooling rate 

Cost suitability model 

Hot swap 

It is the rate applied to reduce the initial control parameter or 
temperature in Simulated Annealing. 

The models derived from land use suitability models where 
the lowest value represents the highest suitability and vice 
versa in interval scale. 

The swapping of land uses between two cells increases the 
cost function value. 

Initial control The initial value of temperature or control parameter used in 
parameter I temperature the Simulated Annealing. 

Initial input solution 

Land characteristics 

Land unit 

Land use suitability 
model 

Land use type 

Metropolis criterion 

Neighbourhood 
solution 

The feasible solution created for optimisation, using 
combinatory methods. 

The physical attributes of land that may or may not favour a 
particular land use type. 

It is represented by a cell or pixel with dimension 30 m by 30 
metre in a raster data set. 

It implies the classification of data sets using ordinal, 
continuous or fuzzy methods before deriving a land use 
suitability map. 

It is the option to use desired use of land to achieve one or 
more objectives. For example, conservation, agriculture. 

A criterion that probabilistically decides whether or not to 
accept a move with higher cost function in Simulated 
Annealing. 

A new solution generated by a small change or move in the 
current solution. 

ix 



Simulated annealing 

Swapping rate 

Tabu length 

Tabu list 

Tabu Search 

It is an approximation optimisation technique based on the 
physical process of annealing. 

It is the total number of swapping of land uses between two 
randomly selected land use units in a step. 

It specifies the size of a Tabu list or the number of iterations 
for restricting a 'Tabu' move. 

A list of specified moves or solution not accessible for 
specified number of iterations. 

It is an approximation optimization technique based on the 
strategy, restricting cycling of the search without improvement 
in the cost function and helping to avoid local minima 
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Chapter 1 

INTRODUCTION 

1.1 Research problem 

Land use is ever-changing in order to cope with the demands of population growth 

(Fisher et al., 1996; Pieri, 1997; Theobald et al., 2000; Ligtenberg et al., 2001). A 

global estimate of land use change suggests that 1.2 billion ha. of forest/woodland have 

been lost since the 1700s. However, the area of agricultural land expanded by the same 

amount in the period (Richards, 1990). Inappropriate land use changes have been 

blamed for massive land degradation and associated environmental and social problems 

Rossiter, 1996; Nehme and Simoes, 1999). These problems are more pronounced in 

downstream ecosystems of catchments (Allan et al., 1997) because they affect water 

quality, biodiversity and loss of habitat (Dumanski, 1997). In Australia, land 

degradation has become the largest environmental problem, causing dry land salinity, 

acidification, contamination and vegetation degradation (ASEC, 2001). The cost of this 

is estimated to be about A$ 788 millions a year (Castles, 1992). The UN has recognized 

land degradation as a global problem affecting the goal of sustainable development and 

has been emphasizing the need for action at both local and national levels (WCED, 

1987). To arrest further land degradation and environmental problems, the sustainable 

use of land resources to the extent of their potential, and not exceeding their capacity, 

has become a primary focus within the concept of sustainable development (van Lier, 

1998). 

Land use planning at the local level has emerged as a primary tool to deal with the 

global problem of land degradation; it partially contributes to the achievement of 

sustainable development through protecting natural and man-made heritage (Bruff and 

Wood, 2000). A major issue in sustainable use of land resources is allocation of the 

resources to compatible land uses with respect to land quality and the desire of the 

stakeholders concerned. The best possible use of land resources has become imperative 

in order to keep a balance between the finite limitations of land resources and the 

demands of the ever growing population (Kurter et al., 1997). 



To this end, a zoning approach has been used in land use planning to control land use 

but in practice, this approach has failed to cope with the new demands of land use 

change (Yewlett, 2001). Several methodologies have been developed to assist in the 

process of land use decision-making for appropriate allocation of desired land uses. This 

research aims to deal with some of the methodologies of land allocation for sustainable 

land use planning in order to ensure perpetual benefits to future generations. 

Growing concern about the environment and natural resources has given sustainable use 

of land resource an importance in the public eye. The public is now playing an 

important role in sustainable land use planning, taking part in and contributing to 

decision-making processes. In Australia, land use planning is the primary strategy 

adopted to combat land degradation and other environmental problems, with the 

involvement of the local communities. The wide public concern over land issues is 

shown in the establishment of over 4,250 Landcare Groups throughout Australia to 

work together towards a more sustainable use of the resources (DAFF, 2004). However, 

land use decision-making about the allocation of available and often limited land 

resources for meeting social, economic and environmental objectives has become a 

complex issue in land use planning processes. Ultimately, the land use decision 

determines the social, economic and environmental conditions in a locality (Arnold, 

1999). 

Decisions for allocating land use are taken at various spatial scales (Bouma, 2001) by 

considering bio-physical, social, economic and environmental factors (Fisher et al., 

1996). The bio-physical attributes of the land largely determine land quality or 

suitability for different land uses (Ligtenberg et al., 2001). However, the decisions are 

mainly subjected to the public (stakeholders) interest and government land use policies. 

It has become essential to involve the public/stakeholders in land use planning (Selman, 

2001). They raise land use issues and set the objectives, the desired land uses and area 

requirement for each land use type. 

Eastman et al. (1993) classified land use decision-making into two categories, single 

and multiple land use decisions, based on the number of land uses involved. In a 

problem involving a single land use or facility, the aim of any decision maker is to find 

the best possible location for the desired land use, or facility, from potentially suitable 

sites. Selection of a dumping site for nuclear waste (Openshaw et al., 1989; Carver, 
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1991) or a research and development facility location (Tomlin and Johnston, 1988) are 

typical examples of a single land use decision problem. However, land use planning at 

landscape or regional level generally involves several land uses for achieving the wide 

range of land use objectives desired by the stakeholders. In this situation, land use 

allocation becomes a multiple land use decision problem. These multiple land uses often 

compete for the same land unit (Lockwood et al., 1996) and conflicts among land uses 

become evident. This adds complexity to the land use decision-making, as the 

conflicting land use needs cannot be met simultaneously under limited resource 

conditions (Monarchi et al., 1976). 

The allocation of multiple and/or conflicting land uses poses a great challenge to 

decision-makers and planners to arrive at a consensus decision among all the 

stakeholders. A land use decision to allocate multiple and conflicting land uses requires 

reconciliation of any conflict by making a trade-off between these land uses based on 

their relative suitability in order to allocate the best possible land use option to each land 

parcel. Therefore, a solution to multiple and conflicting land use problems involves the 

consecutive tasks of suitability assessment of each land unit against each land use 

alternative and then allocating the most suitable alternative. Such a problem is 

appropriately described as Multi Objective Land use Assessment and Allocation 

(MOLAA). This problem is also known by other names such as Multi Objective Land 

Allocation (Eastman et al., 1993), and Multi site Land Use Allocation (MLUA) 

(Diamond and Wright, 1989; Aerts, 2002; Aerts and Heuvelink, 2002). 

A MOLAA problem is, in fact, a resource allocation problem, requiring a solution by 

allocating the desired land use types in a way that satisfies the area and compactness 

requirement. This problem may be common to all levels of spatial scales of ecosystem 

management. These spatial units include site level ( 4-200 ha), landscape level (200-

4000 ha) and region level (thousands of square kilometres) (Schleusner, 1994). The 

problem becomes more complex with an increase in the size of the spatial scale from 

site (for example, at farm level with a single decision maker) to regional level (diverse 

landscapes with several decision makers) (Prato, 2000). However, desired solutions to 

MOLAA problems vary with the differences in preferences in relation to social, 

economic and environmental aims among the stakeholders/decision makers. 
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Conflicts of interest among stakeholders are also inevitable in resource allocation 

decision-making (Bojorquez-Tapia et al., 1994; Lahdelma et al., 2000; Fraser and 

Chisholm, 2000; Liu and Stewart, 2004; Christou et al., 2004; Wester-Herber, 2004). In 

addition to such conflicts, the large number of land parcels or units, their spatial 

variability, the existence of several criteria for land evaluation and also the specified 

constraints such as area and shape requirements make this problem quite complex and 

are difficult to solve manually (Tomlin and Johnston, 1988). Therefore, adopting a 

comprehensive approach for land use planning that integrates social, economic and 

environmental factors has been emphasized for maintaining the integrity of the social 

and natural environments and keeping a balance with economic growth (Pieri, 1997; 

van Lier, 1998). Various techniques and approaches have been developed for land use 

suitability in order to accommodate diverse groups of stakeholders and take into 

account their interests in the decision-making. It is believed that these techniques are 

helpful for reconciling the land use conflict among the stakeholders and achieving a 

consensus in the multi-objective land use decision-making (Bojorquez-Tapia et al., 

2001). 

Multi objective land use allocation has thus become an integral part of land use 

planning (Matthews et al., 2000). The application of multiple criteria for assessing the 

relative suitability of single, or multiple and conflicting land uses has made the Multi­

Criteria Decision Making (MCDM) approach very appealing for land use decision­

making (Rietveld, 1980; Hwang and Yoon, 1981; Pereira and Duckstine, 1993; 

Malczewski, 1996; Malczewski et al., 1997; Aerts, 2002). MCDM methods enable 

decision makers to use multiple and even contradictory criteria to evaluate the different 

options or alternatives in making a decision (Trap and Relles, 1995). These methods are 

discussed in chapter 2. The integration of MCDM and GIS has also proven useful for 

consensus decision-making among a diverse group of stakeholders (Janssen and 

Rietveld, 1990; Carver, 1991; Malczewski, 1996; Bororquez-Tapia et al., 2001). A list 

ofMCDM techniques useful in solving a single or multiple land use allocation problems 

is given in Table 1.1. Although these methods rely on a decision rule based on Multi­

Criteria Evaluation (MCE) for allocating multiple land uses, most of these methods are 

not able to evaluate each land unit for all land uses in order to generate an optimum or 

near-optimum solution to a MOLAA problem. 
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Table 1.1 MCDM techniques for solving single/multiple land use allocation 
problems 

Name of the technique Application and limitation Authors 

Multi-criteria Group Evaluates feasible land use (Malczewski, 
Decision-making Model pattern using multiple criteria 1996) 
(AHP and Integer Linear 
Programming) 
GIS based multivariate Land use suitability assessment (Bojorquez-
application and participatory decision- Tapia et al., 

making 2001) 
MAGISTER (Multi-criteria Generates a suitability map for (Joerin and 
Analysis with GIS for a single land use using Musy, 2000) 
Territory) multiple criteria 
MCEandGIS Application to agricultural land (Janssen and 

use Rietveld, 1990) 
Integration of MCE and For single land use allocation (Carver, 1991) 
GIS basedonMCE 
Multi-objective For single land use allocation (Diamond and 
Programming Modelling Wright, 1989) 
Integer Linear Multiple land use allocation (Aerts, 2002) 
Programming for small number of land units 

An optimum solution to a MOLAA problem may be achieved by allocating each land 

parcel (unit) with the best possible land use, meeting all specified constraints (area or 

shape requirement). The solution will maximize overall land use suitability. However, 

the optimum solution lies within the innumerable possible combinations of the land 

units and land use alternatives and constraints (Diamond and Wright, 1989). 

Computationally, it is not feasible to search for every possible combination of decision 

variables (land unit and land uses) and constraints (area or shape requirement) to find 

the optimum solution in a reasonable amount of time, using either systematic or 

mathematical optimisation techniques within the MCDM. Many real world problems 

are of this nature and have been classified as combinatorial problems (van Laarhoven 

and Aarts, 1987; Aarts and Korst, 1989; Voudouris, 1997). 

One group of optimisation techniques has been successful in delivering sub-optimal 

solutions to combinatorial problems in an acceptable time. These techniques trade off 

the optimality of the solution with computational time and deliver a near-optimal 

solution in an acceptable time frame (van Laarhoven and Aarts, 1987). They are 

collectively called approximation algorithms or heuristic methods (Aarts and Korst, 

1989). These methods are finding wide application in many fields because of their 

simplicity and their ability to solve complicated problems (Youssef et al., 2001). 
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Three famous approximation optimisation techniques that have proven useful for 

generating an acceptable solution to many real world combinatorial problems are 

Simulated Annealing, Genetic Algorithm and Tahu Search (van Laarhoven and Aarts, 

1987). Simulated Annealing has been successfully applied in solving a multi-objective 

land use allocation problem in a post-mining restoration site in As Pontes, Spain using 

raster data (Aerts, 2002). The algorithm delivered a solution by minimizing the cost 

function, allocating each land unit with the best possible land use, that is, with the 

lowest development cost. The development cost model was derived by using two land 

attributes applying different factors for these land uses (Aerts, 2002; Aerts and 

Heuvelink, 2002). Nevertheless, this algorithm has not been compared with other 

combinatorial methods so far. Therefore, the comparative performance of Simulated 

Annealing and the quality of the solution are untested. From an application viewpoint, a 

comparison of Simulated Annealing with one of the combinatorial methods in solving 

the same MOLAA problem may provide users with an informed choice of these 

methods, based on the quality of the solution and the performance of the algorithm. 

Although Genetic Algorithms have been used for MOLAA problems at the farm level, 

they have not been applied at larger scales, that is, landscape or regional scale. 

Matthews et al. (2000) noted that use of raster data causes computational inefficiency of 

the algorithm. Tahu Search is not yet tested for a MOLAA problem; however, it has 

successfully delivered an efficient and effective solution to similar combinatorial 

problems. Based on its simplicity and on its demonstrated applicability to similar 

problems using raster data, Tahu Search algorithm has been found to be appropriate for 

solving the same MO LAA problem in this research in order to compare its solution with 

that of Simulated Annealing. 

In a GIS environment, a decision support module capable of solving a MOLAA 

problem has been developed based on decision heuristics and used for single land use 

allocation (Eastman et al., 1993). This module is available in IDRISI® GIS software and 

is called MOLA (Multi Objective Land Allocation). MOLA allocates land units among 

the desired land uses, satisfying the area requirement and users' preference. However, 

the quality of the solution obtained by this method is not known, as the solution to the 

same MOLAA problem has not been compared with other methods yet. 
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The main goal of this study is to compare the performance of two combinatory methods, 

that is, Simulated Annealing and Tabu Search and the MOLA module in IDRIS!® in 

order to provide an informed choice among these methods in solving a multi-objective 

land use allocation problem. In the research design, it was planned to test the 

application of both combinatory methods in a hypothetical MOLAA problem in the 

Kioloa region in New South Wales (Australia). The performance of these methods were 

assessed based on the improvement in the cost function, spatial compactness, 

computation time and input model requirements. 

In land use allocation, a larger patch of the same land use is more desirable for many 

reasons than a scattered distribution of one land use (Aerts, 2002). For example, a 

spatially compact reserve area is preferred because of low management cost (McDonell 

et al., 2002). Hence, a compactness function has been incorporated in both 

combinatorial methods to enhance the spatial compactness in land use allocation. The 

solutions found by applying compactness function were compared between these two 

methods. 

1.2 Research objectives 

The main objective of the research is to compare the performance of Simulated 

Annealing, Tabu Search and the MOLA module in IDRIS!® by applying them to solve a 

Multi Objective Land use Assessment and Allocation (MOLAA) problem. The aim is to 

provide an informed choice among these methods to the users. These methods treat each 

cell of the raster dataset as a land unit and yield a solution by searching for the best 

possible combination of all the decision variables (land use types and land units). The 

following parameters will be assessed in the output solution for comparing the 

performance of these methods: 

• improvement (minimization) of the cost functions; 

• spatial compactness in terms of number of patches for the different land uses; 

• enhancement of spatial compactness after incorporating compactness function in 

Simulated Annealing and Tabu Search algorithms. 

• computational (run) time taken to deliver the solution; 

This research also aims to find an appropriate combination of parameters for Simulated 

Annealing and Tabu Search, and a suitable initial input solution and cost suitability 

model in order to apply these algorithms in solving a MO LAA problem. The algorithms 
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are applied with different combination of settings of parameters to three different initial 

input solutions derived from three cost suitability models. 

1.3 Implications of the research 

Land use planners or decision makers facing multiple land use allocation problems 

during the land use planning process may use these methods as a decision support tool 

for generating a solution to a specific MOLAA problem. The selection of one decision 

support tool is not an easy task and the users should employ a conscious logic in making 

their choice (Lahdelma et al., 2000). 

The users would ideally be interested in obtaining the most comprehensive solution, in 

the least computational time, with simple data input. However, the solutions generated 

by these methods may not be the same. To be able to decide on the most appropriate 

method, the users (decision makers/planners) should know have some knowledge of the 

methods applicable to the MOLAA problem, as well as the input requirements and the 

quality of the solutions reached from these methods. This research aims to address these 

multiple interests of users; thus, the implications of the research can be broadly stated as 

follows. 

• To allow the characterization of three methods for different circumstances, data 

and intentions; 

• To provide users of the MOLAA with information necessary to make informed 

choices among these methods. 

Decision support tools have been developed to facilitate decision-making by providing 

alternative solutions to a problem. However, how good is that solution? The 

stakeholders may judge the quality of the solution by assessing whether or not their 

values/interests have been truly reflected in the solution. The equity or fairness of the 

decision-making process will enhance the effectiveness and acceptability of the decision 

(Hunt and Haider, 2001 ). It is necessary for the decision makers to ensure 'procedural 

fairness' of the decision support tool in order to bring them to a consensus decision. 

Hence the implication of this research will also on the 'procedural fairness' of these 

methods by assessing their bias towards a particular land use. 
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1.4 Background concepts 

1.4.1 Land and land use 

'Land' has a very wide meaning and scope in geo-political, socio-cultural and economic 

terms (Hamblin, 2001). Hence, land cannot be defined in an easy way. However, every 

human can conceive of it in its physical identity. In economic terms, it is the wealth and 

capital input for production activities. In a geo-technical context, land is the outer crust 

of the earth and also includes inland water bodies, estuaries and coastal areas. It has a 

permanent ge9graphical location covering a finite area and can be described by its 

physical characteristics such as topography, soil and subsurface structure and 

composition (Davis, 1976). These characteristics are used for classifying land categories 

and are also taken into account for land use planning. 

'Land use' is defined as all kinds of human intervention in order to derive goods and 

services from land and can be categorized into three groups, production (agriculture, 

forestry, grazing, mining), services (conservation or ecological services, water 

production, recreational) and infrastructure development (housing, roads, bridges) 

(Vink, 1975). According to Eastman et al. (1993) land uses can be both complementary 

and conflicting. Complementary land uses can co-exist together spatially as well as 

temporally whereas conflicting land uses cannot. 

There have been attempts to classify land uses into coherent groups by generalizing 

detailed observations. Some of the major land use classifications include the World 

Land Use Survey (early 1930s), Second Land Utilization Survey (late 1960s), The 

United States Geological Survey and The National Land Use Classification (Rhind and 

Hudson, 1980). These broad schemes have attempted to provide land use classification 

for a particular purpose, and vary widely in terms of the extensiveness of the area, the 

map scales or source of data (for example remote sensing imagery). None of these 

classifications coincide in terms of the number of land use classes and their description. 

In Australia, land uses have most recently been classified into nine classes based on the 

major use of land and the level of anthropogenic intervention (Stewart, 2001 ). 

Land cover refers to the physical description in terms of the nature of the surface and 

the types of vegetation covering it (Gregorio and Jansen, 1998). 'Land use' is described 

strictly in terms of human use, for example land cover might be broadleaf forest, but 
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land use might also be conservation reserve. This research focuses on land use 

allocation for different uses of land as determined by human beings. 

1.4.2 Land valuation and land evaluation 

'Land valuation' is the economic gain from the goods and services supported by the 

land (Davis, 1976; Hanink and Cromley, 1998). Some values attached to land like 

recreational, environmental, aesthetic and social values are difficult to measure in 

monetary terms. However, the pricing of these values can be accomplished by some 

indirect methods like hedonic valuation, travel cost and household production function 

(Mcconnel, 1993) and contingent valuation (Lockwood et al., 1996). 

'Land evaluation' is the quantitative or qualitative assessment process for assessing 

potential use of land by using some land attributes (Rossiter, 1996). According to the 

F AO, land evaluation is a part of the land use planning process used to assess the 

performance of land in terms of economic gain, social impacts and environmental 

consequences of present land use (F AO, 1976). F AO has developed a Land Evaluation 

Framework or FAO Framework in order to standardize the methods and reconcile 

different methods used by different countries (Davidson, 1992). The main aim of land 

evaluation is to grade land for particular land uses, analysing the social, economic and 

environmental implications and finally to identify the suitability of the· land for one or 

more land uses. 

'Land evaluation' is, therefore, a thorough investigation of all the benefits and all the 

impacts arising from the potential land use. F AO has published guidelines for several 

land use types including rain fed agriculture (F AO, 1983), forestry (F AO, 1984), 

irrigated agriculture (FAO, 1985), and extensive grazing (FAQ, 1991). Initially, land 

evaluation approaches focussed solely on estimating agricultural productivity of land by 

using soil parameters for land use decision-making (Bacic et al., 2003). There have been 

several computer based models available for land evaluation, suitable for specific land 

use types or land qualities or climates (Wood and Dent, 1983; Rossiter, 1990; De la 

Rosa et al., 1992; Rossiter and Van Wambeke, 1995; Fisher et al., 1998). 
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1.4.3 Land capability and land suitability 

The terms 'land capability' and 'land suitability' seem to be quite similar and are often 

used interchangeably. Vink (1975) defined these terms as the ability of the land to offer 

a certain specified land use as determined by the socio-cultural and economic 

conditions. Davis (1976) has defined land capability in two domains. First, he defined 

land capability in terms of land itself, as a measure of a combination of inherent 

physical attributes of the land, the climate and the vegetation. Second, he attempted to 

classify land capability based on specific land uses such as agriculture, forestry and 

engineering through assessing the extent of physical limitations, management and 

conservation requirements. This definition combines both the land's physical 

characteristics and climatic information and also accounts for the limitations imposed 

by these physical attributes. 

The initial intention was to classify land into different capability classes for agricultural 

land use. The US Soil Conservation Service had first classified land capability into eight 

capability classes, four sub-classes and several units based on soil survey data (Rhind 

and Hudson, 1980). Though this land capability classification was intended to be used 

in making agricultural decisions, it was applied to all planning purposes (Steiner, 1983). 

Subsequently, other countries like Canada and Britain developed their own land 

capability classification, in order to suit land use planning and management (Davidson, 

1992). The main aim of these classifications was to facilitate land use planning through 

categorizing land into different classes or subclasses based on land characteristics, 

considering the factors and the constraints that favour or limit a land use type. 

However, land use decisions based merely on the land's physical attributes were soon 

realized to be inadequate to satisfy the growing environmental consciousness and 

economic thinking of the public on land use issues (Bojorquez-Tapia et al., 1994). 

Planners or decision makers responded to it by including social, economic and 

environmental implications of proposed land uses besides the land's physical capability. 

A comprehensive evaluation of land units for particular land uses has thus become 

essential for assessing their relative suitability for different land uses. 

Evaluation of land in terms of its physical characteristics (land capability) and the 

social, economic and environmental implications of proposed land uses are included in 

the term land suitability (Davidson, 1992). Steiner (1983) defined land suitability as 
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fitness of a land unit for a particular land use. McHarg (1969) used land suitability as 

the presence of all the favourable parameters in the absence of the constraints for a 

particular land use, making the land 'intrinsically suitable' for that particular use. 

Land suitability measures the condition or state of land relative to a particular land use 

indicating land quality (Dumanski, 1997). Land quality signifies the condition of land 

resources relative to different land uses like agricultwe ~ conservation and forestry (Pieri 

et al., 1995). It is measured by the suitability of the laind for a specific use and can be 

enhanced or degraded by land use type and management practices (Dumanski, 1997). A 

land suitability assessment provides a rating for each land unit with respect to its 

suitability for each land use, to enable the planners to make an objective decision based 

on the relative suitability values of all potential land uses; suitability has been 

categorized into actual or current suitability and potential land suitability (Brinkman and 

Smyth, 1973; Vink, 1975; Hall et al., 1992). Current or actual land suitability implies 

suitability of land in its present condition, that is, ~thout improving or changing the 

land conditions. Potential land suitability takes into account land suitability that is 

feasible only after some major land improvement requiring a major capital investment 

has taken place. 

Different approaches have been adopted for analysing land suitability for the purpose of 

land use planning. The Dutch method is a land capability classification focused solely 

on soil characteristics, thus its approach is mainly appropriate for land suitability 

assessment for arable and grassland uses. McHarg (I ~69) proposed a method for land 

suitability assessment combining the characteristics of land use, natural parameters and 

their compatibility. Within agricultural land use, the la.lid's suitability for different crops 

has been extensively researched to aid decision-makiag by providing the best crop type 

for each land unit (Johnson et al., 1994; Ahamed et al., 2000; Ceballos-Silva and 

Lopez-Blanco, 2003). 

This research therefore assesses the relative suitability- of each land unit for all potential 

land uses, taking into consideration not only the land's attributes in relation to each land 

use type, but also including appropriate spatial or non-spatial, social, economic and 

environmental parameters. The inclusion of other evi:tluation criteria besides the land's 

attributes implies the suitability of the land unit for the prescribed land use rather than 

land capability. Hence, the term 'land suitability' is considered to be more appropriate 
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for this research. These evaluation criteria are combined following a rule of 

combination as decided by the decision makers and the stakeholders. This research 

applies different approaches to land suitability assessment and the solutions will be 

compared. The details of these approaches will be discussed in Chapters 2 and 5. 

1.4.4 Land use objectives and conflict 

Land serves a wide range of objectives that may be social, cultural, economic or 

environmental. These objectives are the key to making decisions on the evaluation 

criteria (Huddleston, 2002) and also land use types for ultimate land use allocation for 

either single or multiple land use types. In the case of a single land use, a decision­

making problem may arise when there are several land parcels or units suitable for the 

specified land use and only one site has to be chosen. It requires an assessment of all 

potential land parcels and finding the best, most suitable site for the desired land use. 

This problem has been called a 'single facility location problem' or 'facility siting 

problem' (Tomlin and Johnston, 1988; Carver, 1991). 

A 'Multiple Land Use problem' requires the allocation of the most suitable sites for each 

land use. However, the multiple land uses must be further segregated into compatible or 

non-compatible land uses depending on whether they can coexist or not (Eastman et al., 

1993). Compatible land uses can be allocated to the same land parcel at the same time. 

These may be complementary or coexisting land uses. During the designing of the land 

use problem, compatible land uses can be merged together into one land use type and 

allocated to the same unit of land. 

Incompatible land uses cannot be allocated to the same land unit at the same time. 

Mostly, exhaustive or consumptive land uses are incompatible and compete for the 

same land parcels (Miller and Carter, 1979). It means that land can be assigned for only 

one land use at a time, not for both, for example, timber production and nature 

conservation. These are also called conflicting land uses. Whenever there are different 

groups of people or stakeholders interested in incompatible land use objectives this 

gives rise to a conflict over land use (Bojorquez-Tapia et al., 1994; Dale et al., 2000). 

Such conflict is resolved by "consensual land use decision making" through involving 

all the concerned stakeholders to reach a common point (Bojorquez-Tapia et al., 1994). 

This research focuses on three different methods (two combinatory methods and a GIS 

based MOLA module) which can be applied within the framework of a decision support 
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system for a consensus decision among stakeholders on a multiple and conflicting land 

use allocation problem. 

1.4.5 Land use planning and land use allocation 

FAO (1976) defined land use planning as a procedure to identify the most suitable land 

use from the available land use options, taking into consideration the social and 

economic conditions and land and water capabilities. However, the involvement of 

interest groups or stakeholders in land use planning is not made explicit in this 

definition. Recently, the Sahtu Land Use Planning Board," Canada (2003) defined land 

use planning as identifying guiding principles for using land and its resources for the 

social, cultural and economic interests of all the stakeholders. In the Northern Territory 

Government's (2003: 1) point of view, "land use planning is the process whereby the 

Government works with the community to establish agreements on how land suitable 

for development can be identified, serviced, built upon and used for social economic 

purposes in environmentally sustainable ways". 

One of the main goals of land use planning is to achieve economic efficiency, social 

equity and sustainability of the resource. It is necessary for land use planning to guide 

decision-making on land use (F AO, 1976). It aims to harmonize economic development 

with environmental sustainability to fulfil the social, cultural and economic aspirations 

of the people. Land use planning has become an indispensable part of sustainable 

development throughout the world to ensure that current as well as future, land use 

changes will not threaten or damage the environmental· sustainability of the region. 

During the process of land use planning, the decision about the land use is the main 

focus of planners or decision makers and that determines the comprehensiveness of the 

land use planning to achieve its goal. The suitability of the land unit for more than one 

non-compatible land use, and also the conflicting interests and preferences of the 

stakeholders (Campbell et al., 2000), add complexity and make it impossible to select 

the best land use option for all the land units. This is a decision-making problem 

encountered in every land use planning process and may be called the "land use 

allocation problem". This problem can be solved by seeking a compromise solution 

through assigning a best possible land use to each land unit, and thereby maximizing 

overall suitability of the land use. 
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1.5 Organization of the thesis 

This thesis focuses on two combinatory methods and one GIS based MOLA module in 

solving a MOLAA problem and compares their performance in order to provide an 

informed choice among these methods based on the run time, optimum result and the 

input required from prospective users (planners or decision makers). The thesis is 

divided into ten chapters. A brief description of each chapter is presented here: 

Chapter 1 : Introduction 

This chapter discusses the issues and problems of land use planning/decision-making 

and formulates a research problem for comparing two combinatory methods and a GIS 

based MOLA module in IDRISI® software in solving a MOLAA problem. This chapter 

also presents the research objective, implications and some background concepts in 

order to clarify relevant terminology in the context of this research. 

Chapter 2: Approaches of multi-objective land use decision-making 

A framework in the context of land use decision-making is presented in this chapter. 

Different techniques of land suitability assessment and decision support tools focussing 

on various methods of the Multi-Criteria Decision Making (MCDM) are discussed 

based on the available literature. 

Chapter 3: Methods for multi-objective land use allocation 

The theoretical principles of combinatory methods and Simulated Annealing and Tahu 

Search algorithm are elucidated here. This chapter also describes the MOLA module in 

IDRIS!®. 

Chapter 4: Research framework and study site 

The framework for this research and a brief note on each step in the framework are 

provided in this chapter. The study site and the available digital datasets are also 

discussed. 

Chapter 5: Methodology 

A detailed methodology is presented in this chapter. It describes the generation of land 

use suitability models using three different quantitative scales, cost suitability models 

and three initial input models using the random, cheapest and greatest difference 
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methods. This chapter also specifies the parameters for Simulated Annealing and Tahu 

Search. 

Chapter 6: Result I - Applying MOLA in solving a hypothetical MO LAA problem 

This chapter presents the results obtained after applying the MOLA module in solving a 

hypothetical MOLAA problem in the Kioloa region, NSW. The ordinal and continuous 

land use suitability models are used and the results are analysed in the MOLAA 

problem in a small grid. 

Chapter 7: Result II - Applying Simulated Annealing to the hypothetical MOLAA 

problem 

The results of applying Simulated Annealing to the hypothetical MOLAA problem 

using the ordinal, continuous and fuzzy cost suitability models are presented. Different 

combinations of annealing schedules are applied to three different initial input solutions 

produced by the random, cheapest and greatest difference methods. An appropriate 

annealing schedule and initial input model will be sought for applying Simulated 

Annealing to a MO LAA problem. 

Chapter 8: Result III -Applying Tahu Search to the hypothetical MOLAA problem 

This chapter presents the results of applying Tahu Search to the same hypothetical 

MOLAA problem using the same cost suitability models. Different parameters and 

initial input solutions are used for finding the best parameter combinations and input 

solution for applying Tahu Search to a MO LAA problem. 

Chapter 9: Result IV - Comparing the combinatory methods and MOLA module in 

solving the hypothetical MOLAA problem 

The solutions obtained by applying Simulated Annealing, Tahu Search and the MOLA 

module to the same hypothetical MOLAA problem are compared in this chapter. The 

quality of the solution and efficiency of these methods are compared and assessed in 

solving a MO LAA problem. 

Chapter 10: Conclusions 

This chapter presents the conclusions reached in relation to this research. The 

conclusions are drawn on the appropriateness of application of each of these methods in 

solving a MOLAA problem using the different input rriodels chosen. Recommendations 

are also made about future research. 
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Chapter 2 

APPROACHES TO MULTI-OBJECTIVE LAND USE 
DECISION-MAKING 

2.1 Introduction 

Multi-Objective Land use Assessment and Allocation (MOLAA) is a typical example of 

a land use decision-making problem. In this problem, the prime aim of the decision 

maker is to reach a consensus decision on land use allocation among stakeholders 

through maximizing the overall land use suitability of multiple and often conflicting 

land uses. In order to approach a MOLAA problem at landscape or regional scale, it is 

imperative for the decision makers to follow a framework of land use decision-making 

which enables them to achieve the above aim. This chapter will briefly explain the 

concept of decision-making in the context of land use, present an analytical framework 

and describe each element of the framework. Various approaches and techniques have 

also been developed to deal with the complexity of land use decision-making. This 

chapter will thus also evaluate some of these approaches and techniques being used for 

land use decision-making. 

2.2 Land use decision-making 

Decision-making is a situation that arises due to the availability of choices or options to 

address a problem. Hwang et al. (1979) defined decision-making as a process of 

choosing appropriate option(s) to accomplish desired objective(s) from the potential 

alternatives. To Eastman et al. (1993), it is a selection from a set of available options, 

actions or expectations. He called these alternatives the "decision frame" and referred to 

the area where the decision frame is applied as the "candidate set". The set belonging to 

each member of a decision frame is called a "decision set". In decision-making one has 

to decide which decision frame applies to each of the candidate sets. The above 

definitions by Hwang et al. (1979) and Eastman et al. (1993) imply that land use 

decision-making is a process of matching available land parcels with appropriate land 

uses for achieving the desired social, economic and environmental objectives. 
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Land use decision making with several stakeholders or decision makers has become a 

very complex task because of conflicts of interest regarding the land use (Mills and 

Clark, 2001). This difficulty may be attributed to differences in socio-economic aims 

among the stakeholders (Bojorquez-Tapia et al., 2001). Land itself adds complexity to 

the decision-making process, as not all land is suitable for all land uses, rather it offers 

varying relative suitability for different land uses, depending upon the land's 

characteristics together with the land use requirement (Hall et al., 1992). A land unit 

may be suitable for more than one non-compatible land use, all of which could not co­

exist on the same land unit in the same time and space (Eastman et al., 1993). In 

addition, the immobility and finiteness of the land add further limitations to the land use 

decision-making process. 

Land use decision-making for a single land use is relatively easy and straightforward 

and can be accomplished by comparing the suitability values of the entire available, 

potential land parcels. However, the decisions become more complex and challenging 

with the involvement of multiple land uses due to the involvement of stakeholders 

having social, economic and political differences (Brill et al., 1982). Davis (1976) has 

ascribed the complexity of land use decision-making to divided land ownership, and 

multiple authorities among the federal and state governments, private landowners and 

interest groups. However, the severity of the problem may be attributed to the 

sensitivity of the area, its social, economic and environmental importance and the extent 

of the area. At farm level, land use decisions have been found to be influenced by the 

land holding size and also the economic status of the farmer (Ravnborg and Rubiano, 

2001). As in other domains, land use decision-making is also characterized by risk and 

uncertainty due to the incompleteness and lack of accuracy of the datasets (Aerts, 2002). 

In summary, land use decision-making problems tend to be case-specific and are 

governed by the extent (size), data sources and their accuracy, heterogeneity among the 

stakeholders and their land use interests and also the bio-physical characteristics of the 

land itself. 

The aim of land use decision-making is to come to a consensus decision on land use 

allocation among all the stakeholders through maximizing the land use suitability of 

multiple and conflicting land uses. Hence, it has become an integral part of physical 

land use planning, to ensure compatibility between the land resources and land uses for 

ensuring sustainable development. In a comprehensive land use planning process, 
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physical planning follows "land development" and "land management" aiming at 

improving the physical condition of the land and the sustainable use of land, 

respectively (van Lier, 1998). A general decision-making process includes the following 

steps: problem identification; possible alternatives; choice of criteria; evaluation of 

alternatives; and selection of the alternative(s) (Baird, 1989). In the context of land use 

decision-making, definitive answers to the following questions are sought: "What are 

the land use objectives and types?" "What is the best possible land use option for each 

land parcel?" or "Where is the best land parcel for a particular land use?" 

2.3 A framework for land use decision-making 

Land use decision-making is a process which involves single or multiple land use 

allocation problems, taking into consideration spatial, temporal and environmental 

issues. It has become a subject of public concern and needs to incorporate all the social, 

economic and environmental objectives of all the concerned public, institutions or 

agencies for rational and consensus decision-making (Miller et al., 1978; Liu and 

Stewart, 2004). The framework chosen for decision-making differs with the issues, 

however; a general framework for land use decision-making should contain several 

elements. Each of the elements is described briefly in the following sections. 

2.3. 1 Problem Structuring 

2.3.1.1 Stakeholders and decision makers 

Land use decision-making over public land is no longer a single person's decision or 

even a top-down approach (Williams et al., 1998). Securing the involvement of the 

public or actors in any development effort has become a prerequisite for the smooth 

implementation of a project delivering its objectives (Friedmann and Kuester, 1994; 

Pieri, 1997; Ligtenberg et al., 2001). FAO has emphasized the need for adopting a 

participatory approach through the active involvement of stakeholders in land use 

planning/decision-making (FAO, 1993; Kutter et al., 1997) in order to provide them 

with the opportunity to participate and to speak out about their land use interest or 

objectives. In Mexico, the law enforces the participation of all stakeholders in land use 

planning (Bojorquez-Tapia et al., 2001). In Canada, the Commission on Resources and 

Environment has adopted a shared decision-making approach as a primary strategy for 

securing public involvement in the land use planning process (Williams et al., 1998; 
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Duffy et al., 1998). This approach recognizes an equal share among the decision makers 

- those who have got the right to make decisions and the stakeholders - those people 

who will be affected by the decisions, in the land use decision-making process. 

In land use decision-making, 'stakeholders' can be identified as an individual, 

community, groups or organization that have some interest in land use of a specified 

area (Hurni, 1997). The stakeholders are now considered an 'integral part' of the 

decision-making framework (Theobald and Hobbs, 2002). For example, ten major 

stakeholders have been identified for land use decision-making in Michigan, USA 

(MLULC, 2002). At the landscape or regional level, multi-level stakeholders are 

involved and are usually heterogeneous socially, economically and politically. 

Stakeholders having different socio-economic and environmental aims may intend to 

use the same parcel of land for different land uses (Muchena and van der Bliek, 1997). 

They will have different preferences regarding the significance of criteria used for 

assessing different alternatives for decision-making (Malczewski, 1996). These 

differences can be attributed to conflicting interests or preferences among them 

regarding use of a particular land parcel (Bojorquez-Tapia et al., 1994; Zander and 

Kachele, 1999). However, the involvement of stakeholders in the decision-making 

process can be beneficial in two ways. First, they feel ownership of the decision and 

second, they commit themselves to a positive role in the implementation of the decision. 

The prime role of a decision maker is to facilitate the decision-making process through 

encouraging participation of all the stakeholders and to strive for a consensus decision 

on land use issues. The land use decision-making process becomes more complicated 

with the involvement of conflicting interests among the stakeholders and thus, requires 

a rigorous approach and a appropriate tool to reach consensus decisions on the issues. 

Several approaches for involving stakeholders in land use decision-making have been 

developed in order to incorporate their interests and preferences for achieving consensus 

(Bojorquez-Tapia et al., 1994; Malczewski et al., 1997; Moote et al., 1997; Aerts, 2002; 

Skogen, 2003). In this research, the hypothetical problem will not use real stakeholders; 

rather, it relies on expert knowledge and the literature on land use policy to decide on 

different land use issues. 
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2.3.1.2 Land use objectives and land use (type) 

Eastman et al. (1993) did not distinguish between land use objectives and land use 

types in the context of land use decision-making. However, I find these two to be 

clearly different, although complementary to each other. The land use objective 

constitutes every single need of the stakeholders and may encompass social, economic 

and environmental purposes. The identification of a land use objective is the foundation 

for defining relevant land use types for an area. In an allocation problem in a residential 

area, the primary objectives include having access to services like water and electricity, 

requiring minimum cost for construction and minimum damage to the environment 

(Gilbert et al., 1985). The stakeholders may come up with several further objectives, 

like to protect native wildlife and vegetation, maximize timber production and 

recreation, protect the soil and so on. These land use objectives clearly incorporate 

conservation, production forestry and recreation as land use types. The remaining 

objective of protecting the soil may be achieved by setting a criterion which restricts 

forestry operations or agricultural use on sloping lands. These objectives are, therefore, 

the prerequisite for formulating the decision rules for determining suitability of different 

land use alternatives or types (Eastman et al., 1993). 

Land use (type) simply implies the pnmary use of land for social, economic or 

environmental objectives or any combination of these objectives. The major land use 

types often considered in land use decision-making include conservation, agriculture, 

forestry and urban areas. The choice among the different land uses is determined by 

human needs or the purpose to be met from the utilization of a particular land parcel. 

Four land use types, that is, conservation, agriculture, forestry and residential, were 

identified for achieving six land use objectives concerning social, economic and 

environmental issues in designing a hypothetical land use decision-making problem. 

These land use objectives and land use types are elaborated in Chapter 5. 

2.3.1.3 Land use evaluation criteria 

Land use evaluation criteria are simply the basis for measuring the degree of suitability 

of a parcel of land for different land use types and determining the appropriateness of 

the land use allocation (Gilbert et al., 1985). Eastman et al. (1993) categorized 

evaluation criteria into constraints and factors. Constraints are generally the conditions 

which tend to restrict the particular use of this land, making the land parcel unsuitable. 
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For example, flood-prone and fire-hazardous areas may be regarded as constraints on 

residential use and therefore land parcels prone to these conditions will be excluded 

from suitability consideration. Factors are those land attributes which contribute to the 

relative suitability of the land parcel or unit for a particular land use, as determined by 

the attribute classes. The factors are further classified into attribute classes using 

qualitative and quantitative measures, reflecting the relative suitability of each class for 

a specified land use (Basnet et al., 2002). 

A single criterion may not be adequate for evaluating the suitability of a land use 

alternative. Therefore, decisions regarding all real-world problems should be made 

using several criteria (Carver, 1991). However, there are no guidelines on how many, 

and which, criteria are appropriate for assessing land use suitability. The number and 

types of criteria may be determined by the data available and also the resources 

available, for example time, money and the ability to collect new information. However, 

the criteria should encompass social, cultural and economic as well as environmental 

needs of people (Osinski et al., 2003). 

In this research, altogether 17 evaluation criteria including 16 factors and one constraint 

were chosen for four land use types in a hypothetical problem. These criteria will be 

discussed in Chapter 5. The multiple evaluation criteria should be combined to obtain 

an aggregate of suitability values for comparing all decision alternatives. The process of 

combining selected criteria is called a decision rule (Eastman et al., 1993) and will be 

discussed in the next Section 2.3.2. 

2.3.1.4 Spatial criteria in land use allocation 

The spatial criteria in land use allocation may include area, compactness and adjacency 

requirement. In a multi-objective land use allocation problem, the area requirement for 

each land use type is a primary decision to be made in order to arrive at an exact 

allocation of area for each land use to derive all the land use objectives desired by the 

stakeholders and decision makers/planners. 

Compactness is a spatial characteristic (Knight, 2005) and is used in as a relative term 

to describe pattern and distribution of shape of spatial unit such as land unit. A 

relatively compact solution is highly desirable in a land use allocation problem 

(Diamond and Wright, 1989; Aerts et al., 2003). In a multi-objective land use allocation 
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problem, the spatial compactness can be enhanced by allocating adjoining land units 

with the same land use. This was accomplished by incorporating a compactness 

function in a decision support tool (McDonnell et al., 2002; Aerts and Heuvelink, 

2002). Several techniques have been developed to measure compactness, each with its 

own scope and limitations (Knight, 2005). This research uses the number of patches at 

land use level as a measure of spatial compactness and is obtained by using 

FRAGSTAT® under the eight or four neighbours rule. 

An adjacency criterion is also often used in harvesting scheduling in forest planning in 

order to avoid or restrict excessive felling in an area (Lockwood, 1993; Boston and 

Bettinger, 1999). Adding the adjacency criterion to the multi-objective land use 

allocation makes the problem very complex. Hence, only spatial compactness and area 

requirement are taken into account in solving the multi-objective land use allocation 

problem in this study. 

2.3.2 Land use suitability assessment approaches 

Land use suitability assessment is used to evaluate the degree of appropriateness of a 

land unit for a particular land use. The isolated suitability map generated for each 

criterion may be useful for viewing and locating areas that are more or less suitable for 

that land use. Therefore, it may not be enough for decision-making where several 

evaluation criteria and preferences are to be taken into account. Since the 1960s there 

have been continual efforts to provide an acceptable framework and methodology for 

land suitability assessment (Davis, 1976), through which different approaches have 

been evolved. A simplified framework for land suitability assessment is given in Figure 

2.1. The framework includes a land use type to accomplish one or more land use 

objectives or goals at the top of the hierarchy. Relevant criteria and classification of the 

attributes within physical (environmental), social and economic domains are 

fundamental to defining the degree of suitability of different attribute classes for the 

land use. A combined map of all these criteria indicates the relative suitability of each 

land parcel in qualitative or quantitative terms. 
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i 
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-Socio-cultural 
-Economical 
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- Quantitative technique 

- Boolean 
- Ordinal/interval 
- Fuzzy method 

+ 
Combine criterion 

with or without using 
relative weight 

i 
Land use suitability map for 

each land use type 

Figure 2.1 A general framework for land use suitability assessment 

The approaches to land suitability assessment may be classified into qualitative and 

quantitative techniques based on the representation of the criterion attributes and the 

rule of combination. Qualitative techniques include a preliminary way of describing 

land suitability by specifying suitability along a continuum, as "highly suitable", 

"moderately suitable", "suitable" and "unsuitable". Some examples of this technique are 

the Gestalt method (Hopkins, 1977), light table method (McHarg, 1969) and decision 

tree method (Bydekerke et al., 1998). These qualitative methods may be useful in multi­

objective land use decision-making by transferring the qualitative values to quantitative 

values to serve the purpose of comparing the degree of suitability of each land use for 

every land unit, in order to optimise a cost function. 

Quantitative techniques use either ordinal, interval or ratio scales to represent the 

attributes of a criterion signifying the relative degree of suitability. Various techniques 

are available for combining multiple attribute values to derive final or overall 

suitability. The realization of the difference in relative importance of different bio­

physical and economic criteria to various land uses has lead to the development of the 

weighting method. This aims to assign variable weights, based on their significance, to 
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the land use objective by giving higher weights to the relatively more important factors. 

On these grounds, the quantitative techniques of land suitability assessment may be 

categorised into two groups: 

1) Without considering factor weight and; 

2) With factor weight. 

Some of the techniques associated with each group are discussed below. However, 

those approaches based on Boolean logic do not distinguish among varying degrees of 

suitability due to the differences in the attribute classes of a criterion. Every land parcel 

is assessed for a desired land use, whether it meets the land use requirement or not, and 

is assigned '1' for suitable (unconstrained) areas and 'O' for unsuitable (constrained) 

areas. This logic may work for assessing suitability for a single land use but is not 

appropriate for multiple land use allocation. Therefore, land suitability approaches 

based on Boolean logic are not discussed further here. 

2.3.2.1 Without considering factor weight 

1. Ordinal combination method 

The attributes or classes of each factor are classified on an ordinal scale, for example 

from 1 to 5, representing highly suitable, suitable, moderately suitable, fairly suitable 

and unsuitable classes, respectively or in the reverse order. The suitability model is 

generated by combining all the factor maps by using a simple linear additive procedure 

(Equation 2.1 ). This operation can easily be carried out using any GIS software 

employing simple Map algebra. This method is the same as McHarg's Light Table 

technique; however, the values are represented on an ordinal scale instead of in grey 

tones to signify the relative importance of the factors. 

i=n 

S=_Lxi Equation 2.1 
i=l 

Where Sis the suitability value and xi is the value for factor i. 

A System for Selecting Suitable Sites (ASSESS) is a GIS based decision support system 

which uses an ordinal combination method for assessing land use suitability (BRS, 

2003). The final suitability map is generated based on the factor attributes categorized 

into the suitability rating classes, for example 1 to 5, by users. It has proven a useful 

decision support tool for several Multi-Criteria Decision Analysis (MCDA) applications 
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(Hill et al., 2005). These include: land use suitability for low-level radioactive waste 

material (Veitch, 1997); agricultural suitability in the Murray Darling Basin (Bui, 

1999); and assessing catchment conditions in intensive land use zones of Australia 

(Walker and Veitch, 2001). 

The ordinal combination method provides an overall rating of suitability by combining 

all the factor values in the ordinal scale. In doing so, a lower value for one factor is 

compensated for by the higher value of another factor and generates the same suitability 

values for two extreme values. However, while these suitability values are the same 

mathematically, this may not hold true in the real world (Lees, 2004). 

2.3.2.2 Taking account of factor weight 

1. The FAO method 

FAQ's approach quantifies land suitability based on the relative adaptive value assigned 

to the relevant land attributes and their significance for the intended land use (F AO, 

1976). The relative significance of each land attribute in regard to the particular land use 

is taken into account by multiplying the attribute value with an integer value between 1 

and 5. Those factors vital for the desired land use are weighted 1 and non-significant 

factors are weighted 5. Equation 2.2 derives the final suitability rating for each land 

parcel. 

L, values >weight 1 
Suitability Score = L . *IT values= weight 1 

weight> 1 
Equation 2.2 

This formula segregates the most influential attributes (having weight 1) from other less 

important factors (having weight > 1) and multiplies the average suitability values 

assigned to the less important factors by the product of suitability values. The final 

suitability score is mainly attributed to the suitability ratings discounted by limiting 

factors. In this method, the weightings of the factors are assigned arbitrarily whereas the 

ranking of the factors is used as the basis for deriving the weights in the ordinal scale. 

The maximum weight value is always equal to the total number of factors being taken 

into account. 

Istituto Agronomico per l'Oltremare (IAO) successfully employed FAO's approach for 

assessing land suitability for forest plantation and agricultural crops in the Plateau of 
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Ben Silmane in Morocco. The classes of each land attribute were assigned relative 

suitability value of 0 for worst condition and 1 for the ideal condition. The final scores 

derived from Equation 2.2 were transposed into suitability classes, that is, highly 

suitable (S 1 ), moderately suitable (S2), marginally suitable (S3) and not suitable (N). 

2. Analytical Hierarchy Process 

In the late 1980s Saaty developed an Analytical Hierarchy Process (AHP) for a 

comprehensive decision-making, taking into account several factors and their attributes 

(Saaty, 1977). It analyses a decision problem through a hierarchy of the goal, decision 

factors, decision sub-factors and their attributes at the bottom level (Figure 2.2). 

In the case of land use decision-making, the goal is to determine the land use suitability 

scores and comprises the first level of the hierarchy. The second level of the hierarchy 

includes the decision parameters like social, economic or environmental issues for land 

use under considerations. These parameters are further specified in the next level of 

hierarchy (third level) as decision factors such as slope, elevation and distance to road. 

At the bottom of the hierarchy, the attributes of these factors are classified by rating 

their relative contribution to the goal. The sum of the values of all the attributes for a 

decision alternative determines its relative suitability. 

Goal 
---· L1 (Land Suitability Assessment) 

Decision Parameters 
---· L2 (Social, economical and environmental) 

(A) Decision Factor (B) 

~ 
Decision Factors (C) (D) ---• L3 

~ 
Bl B2 B3 B4 B5 Cl C2 C3 C4 C5 ---· L4 

Figure 2.2 Decision hierarchy for AHP process 

Recognizing the differences in the relative significance of the factors to the degree of 

suitability, Saaty developed a pair-wise comparison method to find the relative weight 

or preference of each factor using a 1-9 scale of comparison (Saaty and Vargas, 1991) 
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(Table 2.1 ). The factors are listed in hierarchical order, from most important to least 

important, and a pair-wise comparison matrix is created assigning a relative significance 

value for each factor to the rest of the factors between 1 and 9, as given in Table 2.1. An 

example of a pair-wise comparison matrix is in Table 2.2. 

Table 2.1 Scale for pair-wise comparison proposed by Saaty (1977) 

SN Relative weight 
1 1 
2 3 
3 5 
4 7 
5 9 
6 2,4,6,8 
7 Reciprocals 

Explanation 
Equal importance 
Moderate prevalence of one over another 
Strong or essential prevalence 
Very strong or demonstrated prevalence 
Extremely high prevalence 
Intermediate values 
For inverse comparison 

Table 2.2 A Pair-wise comparison matrix for deriving relative weights 

Factors Al A2 A3 A4 Weights 
Al 1 2 9 7 0.5426 
A2 1h 1 6 5 0.3211 
A3 119 1/6 1 113 0.0462 
A4 1/7 115 3 1 0.0901 
Total 1.7539 3.366 19 13.333 1.0000 

Consistency Ratio: 0.04 
Source: Dai et al. (2001) 

In the example illustrated in Table 2.2, four factors Al, A2, A3 and A4 are compared 

pair-wise in the i:natrix by assigning the relative significance value of each factor in the 

vertical column to all the factors in the corresponding cell. It is necessary to fill only 

one diagonal half of the matrix; the other half is the reciprocal of the values in the first 

half. The relative weight of each factor is the value corresponding to the principal 

eigenvector value, which can be estimated by taking the average of weights derived for 

each cell in the row corresponding to a factor (Saaty, 1980; Eastman et al., 1993). The 

sum of these values should be one. The higher the eigenvector value the higher its 

relative importance (weight). However, the acceptance of the resultant weight depends 

on the consistent judgment of relative significance of different factors. The consistency 

is measured in terms of the probability of random assignment of values in the matrix 

and is called Consistence Ratio (CR). Its value is derived as the ratio of Consistency 

Index (CI) and the average of the resulting consistency index (RI). The pair-wise 

comparison is adequate when the consistency ratio is less than 0.10, otherwise a 

repetition of the rating is required, to avoid inconsistent ratings (Saaty, 1980). 
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CR= CI 
RI 

n 
Rl=max---

n-1 

Equation 2.3 

Equation 2.4 

This procedure has found wide application in multi-criteria decision-making problems 

in various fields, including land use suitability assessment (Carver, 1991 ; Eastman et 

al., 1993; Siddiqui et al., 1996; Eastman et al., 1998; Proctor, 1999; Dia et al., 2001). 

Eastman et al. (1993) incorporated a pair-wise comparison matrix to derive the relative 

importance of different factors to be used in Multi-Criteria Evaluation (MCE) module in 

IDRISI® Software. It provides a concrete framework for designing the decision 

problem; it also allows the use of the user's own criteria and preferences for deriving 

weights using the pair-wise comparison procedure (Malczewski et al., 1997). 

Siddiqui et al. (1996) applied the AHP technique in a GIS environment for solving a 

spatial problem and named it the tool Spatial-ARP. This technique excludes unsuitable 

areas by using the Boolean maps and assigns relative suitability to the rest of the areas 

by combining the Relative Importance Weights (RIW s) at each level of hierarchy as per 

Equation 2.5 (Siddiqui et al., 1996). 

N2[ N3; ] 
Suitability Index=~ RIW/ -~(RIWtJ3 ).RIWifi, Equation 2.5 

This method uses the framework of AHP for formulating a decision problem, as shown 

in Figure 2.2 and derives the RIWs at each level by pair-wise comparison. This method 

does not use absolute values of the factors/attributes, whether in an ordinal or interval 

scale to define land use requirements. These values are estimated in a ratio scale 

between 0 and 1 by a pair-wise comparison signifying their relative contribution to the 

primary goal. However, this method has not yet been compared with other methods. It 

treats each factor separately at each level and combines their values based on their 

relative weights, therefore, it tends to avoid the compensatory effect of one good factor 

over another poor factor. 

3. Weighted Linear Combination (WLC) 

Voogd (1983) incorporated the relative weight of factors to combine multiple criteria 

for assessing suitability. This rule of combination is called Weighted Linear 
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Combination (WLC). Here, each criterion contributes quantitatively to the evaluation 

and may compensate for other criteria. It means that a criterion with poor class may be 

compensated by several criteria with good classes, thereby giving overall an above 

average class (Nijkamp et al., 1990; Eastman et al., 1993). The sum of all the weights 

always equals one and is usually derived by the pair-wise comparison method. This 

technique has been widely used as a rule of combination for decision-making based on 

Multi-Criteria Evaluation (MCE). The factor maps are simply added together after the 

attribute values have been multiplied by their relative weights. The value of each cell in 

the suitability model is given by Equation 2.6. 

Suitability = L w; x; Equation 2.6 

Where wi is weight for factor i and Xi the cell value for factor i. 

This procedure has also been included in the Multi-Criteria Evaluation (MCE) module 

of IDRISI®. The MCE module combines several factor maps after multiplying the 

attribute values by their relative weights and generates a suitability map for a land use 

based on the criteria and the relative weights. When constraints are involved, the 

suitability (S) is derived by multiplying the sum of the weighted value (l:wixi) by the 

product of constraints (IIC1) as shown by Equation 2.7. The constraint maps are created 

by using Boolean logic, 0 to the constraint area and 1 to the non-constraint area. 

Inclusion of constraints in the equation excludes the areas under constraint from the 

suitability map without altering the suitability values of the land unit. 

Suitability= LW;X; *TI C1 Equation 2.7 

Dai et al. (2001) employed the Weighted Linear Combination method for land use 

suitability assessment for four categories of urban land use. The relative weights for the 

factors were estimated by using the pair-wise comparison and the final suitability map 

for each land use alternative was derived by combining all the factor maps using the 

WLC method. In another example, Ceballos-Silva and Lopez-Blanco (2003) assessed 

the suitability of agricultural crops (maize and potato) in Central Mexico by using the 

WEIGHT and MCE module in IDRISI®. The WEIGHT module uses pair-wise 

comparison for estimating the relative weights of the various factors. The Weighted 

Linear Combination (WLC) option available in the MCE module was used to derive the 

final suitability map for each crop. 
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Bojorquez-Tapia et al. (2001) also used the WLC method for assessing land suitability. 

However, they derived the relative weight of factors in an ordinal scale by using the 

following Equation 2.8. 

Equation 2.8 

Where Wif is the weight for factor i land use j, n1 is the total number of factors for land 

usej and rif is the rank of the factor in an ordinal scale for land usej. 

Nehme and Simoes (1999) pointed out that the subjective nature of weighting is a 

problem in the WLC method. In land use decision-making, the objective weighting may 

not be as appropriate as the subjective weighting. The subjective weighting of factors 

enables the decision makers to reconcile the conflicts of interest and preferences among 

the diverse group of stakeholders with different social, economic and environmental 

backgrounds. 

The classification of the factor's attributes in the ordinal and continuous scale is widely 

used before applying the Weighted Linear Combination to combine the multiple 

evaluation criteria. The use of fuzzy logic in representing the factor attributes has been 

recently developed and described as more appropriate for classifying attributes for land 

use suitability assessment (Hall et al., 1992). The next sub-section reviews the 

application of fuzzy logic in land suitability assessment. 

I. Fuzzy logic in land use suitability assessment 

In contrast to the Boolean logic, fuzzy logic accounts for the 'continuity and 

uncertainty' in the attributes (Jiang and Eastman, 2000), imitating the natural basis of 

understanding of the human brain (Zadeh, 1987). Fuzzy set theory has become an 

important mathematical tool in dealing with the world of inexactness and error in 

measurement (Burrough, 1989). Land suitability assessment requiring classification of 

continuous data such as slope, soil, elevation has found fuzzy logic very useful 

(Burrough, 1989; Burrough et al., 1992; Hall et al., 1992; Jiang and Eastman, 2000). 

Fuzzy logic classifies an attribute in a continuous scale by assigning values between 0 

and 1 as determined by their closeness to the defined class. An attribute class exactly 

matching the defined class is assigned a membership value of 1, whereas if a class fails 
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to satisfy the defined class, it is assigned 0 (see Burrough et al. 1992). Mathematically, 

a fuzzy set A for an attribute class x in the population Xis given by Equation 2.9. 

A= {x, µA (x)} x€X Equation 2.9 

Where µA (x) is the membership function value in the range 0 to 1. 

The membership function of attribute x in A may be derived by using a Similarity 

Relation Model (SR) or a Semantic Import Model (SI) (Burrough, 1989). However, 

Burrough suggested the SI method would be simple and appropriate when a good 

knowledge of classifying data exists. The primary membership function is given by a 

symmetirical bell-shaped membership function as shown in Figure 2.3; this can be 

stated by Equation 2.10 for defining membership value for different land attributes 

(Burrough et al., 1992; Kollias and Kalivas, 1998). 

MF -[ l ] 
x - l+{(x-b)/d}2 

for 0 :Sx :SP Equation 2.10 

Where b is the central value and dis the width of transition zone. 
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Figure 2.3 Membership function for single ideal point 
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Figure 2.5 Membership function for assymetric left (a) and right (b) models 

These membership functions can be modified to provide fuzzy membership 

classification for parameters with multiple ideal points and which are asymmetric on 

either the left or right side (Figures 2.4 and 2.5). These models require definition of a 

lower threshold value, a central value and an upper threshold value for each attribute. 

Subsequently, the appropriate model is determined by the class relationship to the 

attribute as found by the attribute classification approach. After finding a fuzzy 

membership value for each attribute, the Joint Membership Function (JMF) is obtained 

by using a convex combination of all the fuzzy subsets i.e. A 1 ••. .•• An and their 

respective weights (wj) as given by Equation 2.11 (Burrough, 1989). 

k 

JMF= LwiµAJ 
j=l 

Equation 2.11 

There have been several papers published on the application of fuzzy set theory to real 

land evaluation problems. Burrough (1989) first applied this logic to land suitability 
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assessment for different crop production in Venezuela and Kenya. This approach was 

compared with the Boolean method for assessing land suitability for expansion of a 

research site in Alberta, Canada by Burrough et al. (1992) and also for land suitability 

for agriculture in Java, Indonesia by Hall and Wang (1992). Both studies revealed that 

the fuzzy method was more flexible as well as more realistic than the Boolean method 

for land suitability assessment. In order to enhance the GIS capability for spatial 

analysis and decision-making, the fuzzy classification approach has also been 

incorporated into the ARCinfo GIS software for land evaluation purposes (Kollias and 

Kalivas, 1998). 

Basnet et al. (2002) also used fuzzy methods for assessing land suitability for manure 

application using GIS. The bio-physical, social and environmental factors were 

classified in a fuzzy scale assigning a value between 0 and 1 to a class defining the 

degree of suitability. Linear scaling equations were used for fuzzy classification of the 

factor attributes. Equation 2.12 was used when the largest value has the best suitability 

and for the opposite case, Equation 2.13 was used. 

Equation 2.12 

Equation 2.13 

where Xu is the value of ij cell in fuzzy scale, Ru is the value of ij cell, Rmax is the 

maximum cell value and Rmin is the minimum cell value. 

Owing to their varying significance for the degree of suitability, factor classes were 

changed into weight values between 0 and 1 by pair-wise comparison using WEIGHT 

module in the IDRIS! software® (Basnet et al., 2001). The factors were also weighted to 

assign values signifying their relative influence on the degree of suitability. The relative 

importance of each factor was estimated based on their ability to achieve the underlying 

objectives of land suitability assessment. The method has been called the Objectives­

Oriented Comparison (OOC) and is undertaken by a direct consultation (for example 

interview) with the stakeholders. The group will decide on the relevance of the factor to 

each objective by assigning 1, 0.5 and 0 to relevant, partially relevant and not relevant, 
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respectively. The total values derived from the OOC provide a consistent judgment of 

the relationship between the factors for the pair-wise comparison in the AHP procedure. 

The factor models are combined together to arrive at a suitability value for each cell by 

using the Weighted Linear Combination (WLC) (Equation 2.14). 

n 

S; = I u;j.suit * w) 
J=I 

Equation 2.14 

Where S; is the overall suitability value for cell i, fusuit is the cell value for factor j and 

w1 is the weight for the factor}. 

2.3.3 Decision support tool 

Multiple criteria, conflicting land uses and socially and economically heterogeneous 

stakeholders add complexity to any land use decision-making. Even if a consensus is 

arrived at on the criteria and rules for combinations among stakeholders and decision 

makers, making a decision on land use allocation for single or multiple land uses is still 

a challenging and difficult task where there are several potential land parcels available 

for the desired land use alternative(s). Manual methods become inadequate to handle the 

huge amounts of geographical and attribute data involved (Tomlin and Johnston, 1988). 

Different decision support tools have been devised to deal with multiple criteria and 

also conflicting land use types in order to generate a scientifically rational land use 

allocation alternative (Hall et al., 1992). However, the tool only offers decision 

alternatives to the problems based on the chosen criteria and decision rules. The 

stakeholders and the decision maker can make modifications to the number of criteria, 

their coding and also the rules for combining them to arrive at an alternative land use 

allocation. They may be satisfied with the land use allocation delivered or may change it 

before making a final decision. The available decision support tools in regard to land 

use decision-making will be described in the following section. 

2.3.3.1 Multi-criteria decision-making (MCDM) 

MCDM has been classified into two broad groups: Multiple Attribute Decision Making 

(MADM) and Multiple Objective Decision Making (MODM) (Hwang and Yoon, 1981; 

Malczewski et al., 1997). The former group involves the choice of the best alternative 
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from a small number of discrete options, whereas the latter is a design problem that has 

an infinite number of possible solutions in a continuous solution space. The MADM 

evaluates a limited number of alternatives based on multiple criteria; it has also been 

called Multi-Criteria Evaluation (MCE) or Multi-Criteria Analysis (MCA) (Janssen and 

Rietveld, 1990; Carver, 1991). If there is an infinite number of possible solutions or all 

the solutions are unknown, the problem becomes a design problem and therefore lies 

within the scope of the MODM. The MODM category of MCDM is also known as the 

optimisation technique and uses mathematical programming and heuristic methods to 

provide an optimum solution to a problem (Aerts, 2002). Figure 2.6 summaries the 

various techniques of the MCDM, and the following paragraphs elaborate these 

approaches. 

Multi-Criteria Decision Making (MCDM) 

Multi-Criteria Analysis or 
Multi-Criteria Evaluation 

Finite set of alternatives 
• Cell to cell evaluation 

Does not consider spatial 
dependence between cells. 
Difficult in resource 
allocation due to problem in 
defining the altemati ves 

Multi-objective Mathematical 
Programming (MMP) 

Search for an optimal solution 
at large amount of 
computational time 

Linear Programming (LP) 

Linear Integer Programming (ILP) 

Optimisation or design 
Techniques 

• Search for a solution from the 
infinite combinations of 
alternatives 

• Minimizes or maximizes an 
objective function to find the 
solution. 

Combinatorial or Heuristic methods 
• Robust and straightforward techoiques 

Solve large complex real world 
combinatorial problem 
Do not guarantee the optimality of the 
~nlntinn 

__.j Simulated Annealing (SA) 

Tabu Search (TS) 

Genetic Algorithm (GA) 

Figure 2.6 Multi criteria decision making approaches in land use decision-making 
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1. Multi Criteria Evaluation (MCE) 

Multi-Criteria Evaluation or Analysis has been developed to facilitate decision-making 

in regional planning and takes into account multiple, conflicting and non-commensurate 

decision variables (Carver, 1991). MCE was described as an approach to investigate a 

number of choice possibilities in the light of multiple criteria. It can handle a small 

number of options and a limited number of criteria, with a maximum of eight 

alternatives and the same number of criteria (Voogd, 1983). The best possible 

alternative is chosen by evaluating the known alternatives based on specified criteria 

and is, therefore, also known as an 'evaluation technique' (Aerts, 2002: 18). 

MCE can be classified into compensatory and non-compensatory techniques based on 

the approaches used for evaluating the available alternatives. In the compensatory 

approach, all the criteria are taken into account in order to find an overall evaluation 

parameter for each alternative solution. The aggregated parameter reflects a combined 

value of all the criteria, where the high value of one criterion counteracts the low value 

of another criterion. The relative weights of criteria may be used to combine them in 

order to incorporate their relative importance to the alternative. This is also called a 

'complete aggregation technique' (Joerin et al., 2001). Weighted Linear Combination, 

Ideal Point Analysis and Concordance-Discordance analysis are compensatory MCE 

techniques. The non-compensatory approach uses a direct comparison of criteria and 

avoids trade-offs between criteria. The search is limited to the selected criteria and is 

also called a 'partial aggregation method' (Joerin et al., 2001). This approach involves 

the Dominance model, Conjunctive and Disjunctive models, Lexicographic Ordering, 

Hierarchical Optimization and Outranking method (Hong and Vogel, 1991 ). Joerin and 

Musy (2000) demonstrated the application of the non-compensatory MCE technique to 

land use decision-making using the partial aggregation of the criteria and avoiding 

comparison of incomparable alternatives. 

Carver (1991) demonstrated the applicability of MCE techniques to complex land use 

decision-making involving several land use alternatives with different attributes. Carver 

applied three MCE techniques, after some modifications, and integrated them with GIS 

to evaluate potential sites for disposing of nuclear waste. These techniques were Ideal 

Point Analysis (IPA), Hierarchical Optimisation (HO) and Concordance-Discordance 

Analysis (CDA). In IP A, an ideal solution is assumed based on the criteria used and the 
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quality or appropriateness of each solution (alternative) is assessed with reference to the 

ideal solution. In CDA, the pair-wise comparison of the available alternatives is the 

main basis of evaluating the alternative solutions. The HO involves ranking of criteria 

based on their relative importance and follows the evaluation of alternatives based on 

their ability to satisfy the prioritised criteria. 

Eastman et al. (1993) used a weighted linear combination (WLC) as a compensatory 

MCE technique to find relative suitability by combining several continuous factors, 

after normalization and relative weighting. The relative weights were derived by pair­

wise comparison of the criteria. Other MCE techniques involve Order Weight 

Combination (OWC) and Boolean intersection. All three MCE techniques have been 

integrated into MCE module in IDRISI® GIS software. 

2. Multi Objective Decision Making (MODM) 

Multi objective decision making techniques are specifically designed to handle 

problems which have an indefinite number of possible alternative solutions. Many real­

world problems are of this type and fall within the scope of the MODM. These 

techniques tend to find an optimum solution through designing the best possible 

combination of alternatives in which all the conditions set forth by the decision makers 

are met (Hwang et al., 1979). These are also called 'optimisation' or 'design techniques' 

(Aerts and Heuvelink, 2002). The aim of optimisation is to find a best compromise 

solution through combining all the decision variables and meeting the specified 

constraints. 

The optimisation goal is expressed in mathematical form as the objective function to be 

maximized or minimized (CSEP, 1996). There are several optimisation techniques that 

can deal with different types of optimisation problems. Hwang et al. (1979) reviewed 

the MODM techniques and categorized them into three broad groups, based on 

inclusion and/or exclusion of decision makers preferences. However, in the case of land 

use decision-making, the MODM techniques can be classified into two groups: the 

mathematical programming technique and heuristic algorithms. These techniques are 

described briefly here. 
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I. Mathematical Programming Techniques 

The mathematical programming techniques were employed to facilitate the land use 

decision-making process through generating non-inferior sets so that a best solution 

could be chosen (Brill et al., 1982). Though the linear programming technique provides 

an optimal solution to problems having an objective function and where all the 

constraints are linear (Foulds, 1984), it may not be an appropriate technique for solving 

problems that are non-linear in character, like land use allocation problems. 

However, the objective of allocating only one land use to one land parcel makes such a 

problem an integer type, which is therefore solvable by integer programming methods 

(Aerts, 2002). Gilbert et al. (1985) demonstrated the application of multi-objective 

integer programming to allocating residential land use in the Norris area in Tennessee, 

USA. They attempted to optimise four objective functions: cost, distance to desirable 

and undesirable land features and the shape of the area. These were defined as sub­

problems solved by using an integer-programming technique, included in a program 

called MOLANDA (Multi-objective Land Allocation). Malczewski et al. (1997) 

developed a Multi-criteria Group Decision Making model by integrating AHP and 

integer programming methods. The model was tested by allocating nine land use types 

to 32 land units in the Cape Region, Mexico. Aerts (2002) also demonstrated the 

application of integer programming to three land use allocation problems. These models 

have demonstrated the usefulness of mathematical programming techniques for 

delivering a non-inferior solution to single or multiple land use allocation problems. 

The size of the problem was found to be crucial to the usefulness of the mathematical 

programming method. The size of the problem determines the computational time and 

this tends to grow by polynomial time. Though the mathematical programming 

techniques deliver an optimal solution, the computational time increases with the size of 

the problem and thus it may not be solved within an acceptable period of time. The 

entire evaluation of all possible solutions becomes computationally not feasible in the 

case of larger-size problems. Aerts (2002) concluded that the integer programming 

method could not solve problems with a matrix of larger than 50 by 50 cells. Such 

problems have been classified as 'Non-deterministic Polynomial-time hard or complete' 

(NP-hard or NP-completeness) problems and they attracts another group of MODM 

techniques called combinatory methods or heuristic algorithms (Aarts and Korst, 1989). 

The combinatory methods will be discussed briefly in the next section. 
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II. Combinatory methods or heuristic algorithms 

The heuristic algorithms are capable of solving combinatorial problems generating a 

solution close to an optimal solution through minimization or maximization of an 

objective function; these optimisation techniques may also be called combinatorial 

methods. Combinatory methods or heuristic algorithms have been specifically 

developed to handle NP-hard or NP-complete problems by delivering a sub-optimal 

solution in an acceptable time. Those NP-hard or NP-complete problems having 

discrete control variables are a group of problems that require an optimum permutation 

of all the control variables. The search for each permutation of the control variables for 

a NP-hard problem is exhaustive and computationally not feasible as the time grows by 

polynomial time. Such problems have been categorized as 'combinatorial optimisation 

problems' (Otten and van Ginneken, 1989; CSEP, 1996). 

The heuristic algorithms trade off the optimality of the solution to the computational 

time. The solutions are not exactly optimum solutions; rather, they are sub-optimum or 

near to optimum solutions, obtained within reasonable amounts of time. As the 

solutions delivered by these algorithms are approximate solutions, the algorithms are 

also called 'approximation algorithms' (van Laarhoven and Aarts, 1987). Based on the 

scope of the approximation algorithms, an algorithm can be categorized either as a 

'tailored algorithm' or a 'general algorithm'. The Simulated Annealing, Genetic 

Algorithms and Tahu Search are viewed as general approximation algorithms applicable 

to a wide variety of combinatorial optimisation problems (Pirlot, 1996). A list of 

combinatorial methods and examples of the real world problems which have been 

successfully solved by these combinatorial methods is given in Table 2.3. This research 

aims to apply the Simulated Annealing and Tahu Search in solving the MOLAA 

problem and to compare their performances. 
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Table 2.3 Combinatory methods used for solving real world combinatorial 
optimization problems 

S. Name of the algorithm 
Application Authors 

N. and abbreviation 
1. General Purpose General application (Connolly, 1992) 

Simulated Annealing 
(GPSIMAN) 

2. Genetic Algorithm Land use allocation (Stewart et al., 2004) 
3. Simulated Annealing Graph Colouring and (Johnson et al., 1991) 

number partitioning 
4. Simulated Annealing Police District Design (D'Amico et al., 2002) 
5. Simulated Annealing Trusses Design (Hasancebi and Erbatur, 

2002) 
6. Simulated Annealing Harvesting Scheduling (Lockwood, 1993) 
7. Simulated Annealing Spatial Optimisation (Trap and Relles, 1997) 
8. Simulated Annealing Multi-objective land (Aerts, 2002; Aerts and 

use allocation Heuvelink, 2002) 
9. Tabu Se.arch Harvesting Scheduling (Bettinger et al., 1997; 

Boston and Bettinger, 
1999) 

10. Tabu Search Job-shop scheduling (Dell'Amico and Trubian, 
1993; Brandimarte, 
1993) 

11. Tabu Search Quadratic assignment (T aillard, 1991) 
problem 

12. Simulated Annealing Circuit Design (Kirkpatrick et al., 1983) 
13. Genetic Algorithm Multi-objective land (Matthews, 2001) 

Land Allocation Decision use planning 
Support System (LADSS) 

2.3.3.2 GIS application in land use decision-making 

Geographic information system (GIS) was developed to combine different fields of 

spatial data handling into a single system (Burrough et al., 1992). The system 

encompasses all aspects of spatial representation from data capture to display of an 

output, as well as intermediate operations like storing, retrieval, manipulation, analysis 

and query of the spatial data. Land is the primary geographic or spatial object of 

interest, thus GIS has been used widely used in land use planning and decision-making 

(Tomlin and Johnston, 1988; Heit, 1991; Martin, 1996). One of the analytical 

capabilities of present day GIS is due to the 'overlay technique', which came out of 

McHarg's manual on the overlying of thematic maps for land use planning (Lees, 

2004). The following sections briefly describe the history of the use of GIS in land use 

decision making, from McHarg's pre-GIS approach to the present application of GIS to 

land use decision-making. 
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1. Pre-GIS approach: McHarg's method 

Thematic maps representing a particular feature of the earth have been found to be 

useful in decision-making from early times. In the early stages, the production of 

thematic maps was a very costly and tedious process because of inadequate techniques 

for handling the earth's continuous features, the difficulty in classification and problems 

encountered in discrete representation of the earth's features. Therefore, the use of 

thematic maps was determined by the ease of their production (Lees, 2004). Before the 

advances in the techniques for thematic mapping, McHarg (1969) produced thematic 

maps manually for various natural features categorized into consistent regions using 

graduated shades of grey colour. These thematic layers were put together or overlaid on 

a light table and suitability values for different land uses were interpreted based on the 

lightness or darkness of the shade. McHarg used this approach to provide an ecological 

plan for the Potomac River Basin in the USA. He regarded the basin as an 'interacting 

process' and took into account various natural phenomena like climate, geology, 

hydrology, soils, physiography, vegetation, wildlife and man-made features such as 

accessibility, to determine the areas that were suitable for agriculture, forestry, 

recreation and urban development. The multiple uses of the land were assessed by the 

compatibility of these land uses and finally a composite suitability map for the basin 

was derived. This approach later became known as 'McHarg's light table method' 

(Steiner, 1983). Though the approach is considered very primitive in today's context 

and with advances in GIS technologies, it provided the foundation for the 'overlay 

method' of present GIS analysis capability (Lees, 2004). 

In a Metropolitan planning exercise, McHarg (1969) used a different approach to 

combine attributes for identifying suitable areas for urbanization. First, land units with 

the attributes that did not favour urban use were identified. These areas were 

subsequently excluded from urban use. Secondly, the potential land areas were assessed 

and ranked for their strength for construction and suitability for septic tanks based on 

soil properties. The ranking of land units based on their suitability enabled identification 

of the most suitable land for urban use. The process revealed a sequence of sieving 

operations and is therefore called 'McHarg's Sieving method'. Both McHarg's methods 

were very subjective and the datasets involved were nominal data types. 
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2. GIS based approach 

Even though there had been considerable developments in GIS technology, these were 

not applied to their full potential to deal with real world problems. Until the late 1980s, 

GIS technology was not appreciated as a tool in land use decision-making. The digital 

mapping technique and map algebra have made it possible to use GIS in land use 

decision-making. Tomlin and Johnston (1988) realized the potential of GIS technology 

in land use data capturing, storing, manipulation and analysis, and attempted to verify it 

by investigating a hypothetical land use allocation problem in Illinois, USA. They 

considered sixteen land use types relevant for the areas. These land use types were 

allocated based on their land characteristic requirements (site criteria) and also the 

predetermined relationships between two land use types (situation criteria). Selected 

criteria were used to assess the suitability of each land use type by assigning relative 

values. Criteria maps using digital databases were overlaid to reveal the overall 

suitability of each land use type. The minimum area for each land use type was used to 

identify feasible and non-feasible areas. Iterative processes accomplished the final 

allocation to each land use type, achieving a predetermined spatial relationship between 

any two land use types. Tomlin and Johnston (1988) found the technique delivered a 

satisfying and appropriate outcome for making land use decisions. 

Openshaw et al. (1989) also used GIS techniques to aid decision-making in locating a 

suitable site for dumping nuclear waste. The problem was a single objective location 

problem but was evaluated using multiple criteria namely population, geology, access 

and conservation. Overlay and buffer operations were carried out to combine these 

attributes and finally, potentially feasible sites for low and intermediate level radioactive 

wastes were located, based on the Boolean search method. These operations and search 

methods proved useful in identifying an area which simultaneously met all these 

criteria. The successive overlay of criteria maps specifies the area which meets all the 

specified criteria. But it does not provide any clues to the decision maker about which 

sites within the defined feasible area offer the best combination of site-specific 

characteristics. However, these operations are straightforward and simple, and do not 

involve any analytical capability to evaluate the suitability of the area within the 

feasible area to aid the decision making (Carver, 1991). Carver also found that the 

existing GIS techniques were of limited use when multiple objectives and several 

conflicting criteria were involved. 
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3. Integrating other methods with GIS 

These initial efforts of applying GIS as a decision support tool in land use issues 

provided a crucial step for further development. The limitations of the existing 

techniques prevented GIS from being very useful as a decision support tool in complex 

land use problems involving non-deterministic, multiple and conflicting attributes. 

However, the ability of GIS in data acquisition, storing, manipulation and visualization 

provided an essential framework for its integration with other analytical or optimisation 

tools outside GIS (Grabaum and Meyer, 1998). Many efforts have been made to 

integrate other methods capable of performing spatial analysis into the GIS. Integration 

of other methods with GIS has greatly enhanced the spatial analytical capability of GIS 

and has made it a powerful planning tool that can facilitate decision-making by enabling 

generation of different, alternative solutions for different scenarios. The following 

sections describe some of the decision support tools developed for single/ multiple land 

use allocation decision-making through integrating other methods with GIS. 

I. For single land use allocation problems 

Carver (1991) first attempted to combine three Multi-Criteria Evaluation (MCE) 

techniques within a GIS framework to locate suitable sites for storing radioactive waste 

material in the UK. The incorporation of the Multi-Criteria Evaluation techniques 

enabled combination of a wide range of criteria using different weights for unbiased and 

explicit comparisons among all potential sites. Carver used three MCE methods for 

evaluating potential sites revealed through applying primary siting criteria. An Multi­

Criteria Evaluation technique programmed outside GIS was linked through a macro 

language to evaluate potential sites using a GIS database created for specific site 

characteristics. Carver found that a best compromise solution for nuclear waste disposal 

could be displayed using GIS. This integration of MCE with GIS thus has potential for 

developing a Spatial Decision Support System for single facility location problems. 

'MAGISTER', an acronym for Multi-criteria Analysis with GIS for TERritory, decision 

support model combining the MCE and GIS (Joerin and Musy, 2000). The input data 

handling, management and spatial analysis are carried out by using a GIS package, 

whereas the data compilation and evaluation of all the alternatives to arrive at the best 

selection of the alternative is accomplished by the MCE technique. The model relies on 

an outranking method called ELECTRE developed by Roy (1981) for comparing 

alternatives. Though this method can handle only a limited number of alternatives, it 
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avoids the comparison of entirely different alternatives. In order to reduce the number of 

alternatives, the alternatives are compressed based on a homogenous index by using 

threshold values for non-difference, strict difference and veto as determined by the 

decision makers. This model was implemented for allocating land for residential 

purposes in the area of Vaud, Switzerland. The model is interesting for single land use 

allocation problems and involves many people in the decision making process. 

However, the authors did not mention using this model for multiple and conflicting land 

use allocation problems. 

II. For multiple land use allocation problems 

Eastman et al. (1993) appreciated the growing scope for making GIS in policy decisions 

through providing informed choices to the decision makers and in resource allocation 

decisions through explicit evaluation of different alternative resources. Eastman and his 

team worked extensively on land use decision-making problems and arrived at GIS 

solutions for different typologies of land use decision-making through integrating 

different MCE techniques with GIS. Three MCE techniques, Weighted Linear 

Combination, Order Weight Combination and Boolean intersection have been 

incorporated into the IDRISI® GIS software (Eastman, 2001). These techniques 

combine factor maps based on their relative weights and exclude the areas specified by 

Boolean constraint maps. The output serves as a suitability map revealing the relative 

suitability of each cell. The relative weight of a factor can be derived from different 

weight schemes. The pair-wise comparison, one of the most widely accepted methods 

for determining relative weight (Proctor, 1999), has also been incorporated in the 

software. This MCE module has proven useful for providing decision support in single 

objective problems with single or multiple criteria (Eastman et al., 1998). The GRASS 

(Geographic Resources Analysis Support System) software has also built in the capacity 

for doing MCE based on the WLC method (Bojorquez-Tapia et al., 1994). These MCE 

modules are able to create a suitability map based on multiple criteria but are not 

adequate for providing the decision support for multiple and conflicting land use 

decision-making. 

Except for the single facility location problem, land use planning should take into 

account the multi-functionality of the landscape and therefore involve optimum 

allocation of multiple land uses. Realizing the demand for a decision support tool to 

allocate multiple and conflicting land uses, Eastman et al. (1993) developed a Multi 
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Objective Land use Allocation (MOLA) module by applying the Multi Criteria 

Evalution (MCE) in a GIS environment. This is one of the methods chosen for this 

research to compare the results with other methods by solving the same MOLAA 

problem. A detailed description of the MOLA procedure is given in Chapter 3. 

Bojorquez-Tapia et al. (2001) used multi-criteria evaluation (MCE) to evaluate each 

land use option based on the defined criteria and later completed a multi-objective 

analysis by using multivariate numerical classification through a divisive polythetic 

partitioning, to combine land units into four land use types. The relative suitability of 

each pixel was assessed from the relevant criteria for each land use type using the 

Multi-Criteria Evaluation technique in Unix-based GIS software called GRASS. The 

weighted linear combination of the criteria and subsequent normalization of suitability 

values to a 1 to 10 scale were carried out to make a comparison of the relative suitability 

of land use types. The multi-objective analysis was carried out using the Principle 

Component Analysis (PCA) technique to segregate the total area into groups of 

homogenous land units. The relative suitability of different land use types m 

comparison with these homogenous units was instrumental in deciding between 

exclusive dominance or competition between two or more land use types. The land use 

conflict was resolved either by allocating the area to the highest suitability land use or 

by a negotiated solution guided by environmental principles. This numerical 

classification procedure is claimed to be easily understandable by all stakeholders and 

quicker than the alternative methodologies such as Analytical Hierarchy Process or 

fuzzy logic (Bojorquez-Tapia et al., 2001). 

Malczewski et al. (1997) devised a Multi-Criteria Group Decision Making model 

(MCGDM) for land use decision-making based on the AHP and mathematical integer 

programming. The AHP method was used to reconcile the conflicting interests and 

preferences of different stakeholders by pair-wise comparisons. The model was tested 

for its suitability for making a consensus decision on allocation of nine land use types in 

32 land parcels based on their suitability in Cape Region, Mexico. 

2.4 Summary 

This chapter has discussed the framework for land use decision-making which will be 

applied to solving a MOLAA problem. For a MOLAA problem at a regional scale, the 

decision maker should first identify all stakeholders having an interest in land use 

planning in the region. The stakeholders will be the focal point in the land use decision-
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making process. They will express their land use objectives and preferences which will 

be the basis for identifying land use types and the area required for each land use type. 

The stakeholders may also present many criteria for assessing the relative suitability of 

each lan:d use type. However, the selection of criteria will depend on the available 

information/data and resources available. Combining the selected evaluation criteria is a 

crucial step in land use decision-making framework. The decision rule plays a greater 

role in land use suitability assessment. 

This chapter briefly reviewed qualitative and quantitative land use suitability 

assessment approaches in the context of multi-objective land use decision-making. Land 

use suitability assessment indicates the relative suitability of each land use type using 

multiple criteria and a decision rule. However, allocation of single or multiple land uses 

to the potential land units requires a decision support tool for handling the massive 

amount of bio-physical data needed for generating decision alternatives. Several 

approaches and techniques have been developed to solve such land use allocation 

problems. This chapter has briefly described some of the different approaches to multi­

criteria decision-making (MCDM) and the application of GIS to land use decision­

making. Chapter 3 will elaborate on three methods (Simulated Annealing, Tabu Search 

and MOLA, the GIS based technique which will be compared for solving the same 

MOLAA problem in this research. 
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Chapter 3 

METHODS FOR MUL Tl-OBJECTIVE LAND USE 
ALLOCATION 

3.1 Introduction 

After assessing the suitability of each land use, the next major task in land use decision­

making is to allocate multiple land uses by satisfying conditions such as area 

requirement, shape, and adjacency. Different methods of Multi Criteria Decision­

Making can be employed in solving multi objective land use allocation problems 

(discussed in Chapter 2). Among these methods, this research focuses on the MOLA 

module in IDRISI® GIS software and the combinatory methods. Simulated Annealing 

and Tabu Search have been chosen among the combinatory methods in order to 

compare their performance with that of the MOLA module in solving the same land use 

allocation problem. The next section briefly describes the theoretical background of the 

combinatorial optimisation methods and provides a detailed explanation of each of these 

methods. 

3.2 Combinatorial methods 

A MO LAA problem resembles the formulation of a general combinatorial optimisation 

problem. Mathematically, the optimisation goal of these methods can be expressed in 

the form of an objective function that is to be minimized or maximized (CSEP, 1996)~ 

In a minimization problem, the objective function becomes the cost function (F) and S 

represents the possible configuration of land use options and land parcels in the 

MOLAA problem (Equation 3.1) 

F:S--+R Equation 3 .1 

where R assigns a real number to each configuration. 

Though the optimum solution Ciopt) lies within the solution space S, the combinatorial 

methods cannot find the optimum solution (Foulds, 1984). Therefore, an acceptable 
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solution, F(i) close to the optimum solution is found when the following condition is met 

(Equation 3.2): 

F(iopt) <= F(iJ for all i ES Equation 3.2 

Combinatory methods or heuristic algorithms provide a solution that is better than that 

achieved by the local search by generating a sub-optimal solution close to the global 

minimum through avoiding entrapment at a local minimum (Pirlot, 1996). The local 

search methods only accept a solution with lower cost function than the previous 

solution and finally reach a solution where the cost function cannot be further improved 

over a specified number of iterations. However, these methods use a different strategy 

to the local search method and occasionally accept solutions even with a higher cost 

function. Such moves obviously increase the cost function values but help to avoid 

being trapped in a local minimum. They finally deliver a better solution closer to the 

global minimum than that reached by using the local search methods. Combinatorial 

methods like Simulated Annealing and Tabu Search may provide better solutions by 

improving the cost function through escaping the local minimum. These methods may 

not reach the global optimum but will most likely reach a sub-optimal or near-global 

minimum. A detailed description of the Simulated Annealing and Tabu Search 

algorithms and their application to a MOLAA problem is provided in the following 

sections of this chapter. 

3.2. 1 Simulated Annealing 

The Simulated Annealing algorithm is a general approximation algorithm which has 

found wide application in combinatorial optimisation problems in many fields (CUP, 

1992; Pirlot, 1996). This algorithm was derived from 'thermodynamics and metallurgy' 

(Ulungu et al., 1999: 222) or 'statistical physics' (van Groenigen and Stein, 1998: 

1078). The simulation begins by heating the system into a molten state and 

subsequently slowly cooling the system down by allowing enough transitions to reach 

the thermal equilibrium at each temperature step; this is called 'annealing'. The 

annealing process leads to a very stable low energy crystalline structure, whereas the 

rapid cooling, called 'quenching', produces a metastable non-crystalline structure 

(Kirkpatrick et al., 1983). The final structure of the solid is the outcome of the cooling 

process, depending upon whether or not the thermal equilibrium is attained at each 

temperature. Kirkpatrick et al. (1983) and Cerney (1985) independently observed the 
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similarities between the physical process of annealing and the optimisation of 

combinatorial problems. They eventually demonstrated the application of the algorithm 

for solving combinatorial optimisation problems (Aarts and Korst, 1989; Nelson and 

Liu, 1994). As this algorithm has its origin in a simulation of the annealing process, it is 

commonly known as a 'Simulated Annealing' algorithm. 

In the 1950s Metropolis and his colleagues had already added a new condition for 

accepting random moves in the simulation of solids to thermal equilibrium, finding not 

all random moves were always feasible in the search space involving interaction of 

energies between two atoms (Luke, 2002). Hence, a condition was introduced to prevent 

the acceptance of all the random moves. This condition is known as the Metropolis 

criterion and the algorithm is known as Metropolis' Monte Carlo Simulation or simply 

Metropolis' algorithm (van Laarhoven and Aarts, 1987). After incorporating the 

Metropolis Criterion, the simulation procedure becomes as follows. Every random 

move brings a small random change in the current state i with energy Ei to a new 

configuration j with energy E1 and then, compares the energies. If the configuration j has 

equal or less energy (E1 :S Ei) than the initial configuration i, the new state j is accepted. 

If the E1 is higher than the Ei, the acceptance is probabilistically determined by 

comparing the value of the Metropolis criterion with uniformly distributed random 

numbers between 0 and 1. The Metropolis criterion is as below (Equation 3.3): 

P(M) ~ exp(-M/T) Equation 3 .3 

where Tis the temperature. 

The algorithm generates a large number of transitions at each temperature step, thus the 

system attains a thermal equilibrium with probability distribution of the states 

corresponding to the Boltzmann distribution (van Laarhoven and Aarts, 1987). In 1983, 

Kirkpatrick and his colleagues found similarities between the process of finding the 

lowest energy state of a system and the combinatorial optimisation aimed at the 

minimization of the cost function (Kirkpatrick et al., 1983). In the iterative 

improvement method of combinatorial optimisation, the cost function acts as the energy 

of the system and accepts only the lower cost function that is always moving down the 

slope, until there is no improvement in the cost function. This system finally ends up 

with a local optimum solution. A rapid reduction in temperature from a high 

temperature to a freezing temperature does not yield a solution close to an optimum 
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solution. However, the application of the Metropolis algorithms in combinatorial 

optimisation problems enables acceptance of even the higher cost function 

probabilistically and searches for the global optimum, where the configuration of the 

problem, the cost function and control parameter replace the state of the solid, the 

energy and the temperature, respectively (van Laarhoven and Aarts, 1987). 

The Simulated Annealing algorithm is, in fact, an application of Metropolis' algorithm, 

applying a procedure in statistical mechanics to the field of combinatorial optimisation. 

The procedure, in this case, begins with an initial configuration i of the problem having 

initial cost function F; at a very high control parameter (C). A small random change in 

the original configuration i is brought about by a predetermined procedure to generate a 

new configuration j with cost function Fj. If the F; > Fj, the new configuration j is 

automatically accepted, whereas if F; < Fj, the new configuration is accepted with a 

probability value of the Metropolis criterion given by: exp ( - (F; - Fj) I C ). Unlike the 

iterative improvement method, the uphill moves, that is, the higher cost functions, are 

also accepted, when the value of Metropolis Criterion is greater than the uniformly 

distributed random number between 0 and 1. If the random number value is higher, the 

new configuration is rejected and the current configuration is used for further 

simulation. The process is repeated until there is no further deterioration in the cost 

function, implying the attainment of an equilibrium at the specified control parameter. 

The whole process is the same as in Metropolis' algorithm. 

When equilibrium is reached, the control parameter is reduced by a very small amount 

and the same algorithm is repeated. This process is continued until the value of the 

control parameter comes down to a small value and no further change in the cost 

function is expected. At this stage, the simulation is stopped and the frozen 

configuration with the cost function is regarded as the final solution offered by the 

Annealing algorithms. Figure 3.1 summarizes the steps of Simulated Annealing 

algorithms. 

Simulated Annealing is a stochastic search method based on randomization techniques 

(Yao, 1995). Its basic foundation lies in iterative improvement algorithms or 

neighbourhood search or local search, where the algorithm terminates in a local 

minimum, based on the initial configuration (van Laarhoven and Aarts, 1987; Aarts and 

Korst, 1989). However, unlike the iterative improvement algorithms or gradient 
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methods, Simulated Annealing yields a solution that is not dependent on the initial 

configuration and the solution is very close to the global solution (Mundim et al., 2003). 

The wider application of the Simulated Annealing algorithm to solving. large scale 

combinatorial optimisation problems is associated with its ability to find a global 

optimum embedded in several local minima through the occasional acceptance of uphill 

moves (NRC, 1992)). It has successfully delivered acceptable solutions to classic 

combinatorial optimisation problems like Travelling Salesman Problems (TSP), circuit 

design (Kirkpatrick et al., 1983), graph partitioning (Johnson et al., 1989), job shop 

scheduling (van Laarhoven et al., 1992), server allocation (Liu et al., 1994) and most 

important for this research, land resource allocation (Aerts, 2002; Aerts and Heuvelink, 

2002). 

Begin 

End 

1) Initial feasible solution 
with initial temperature (T1) and cooling function 
current cost function (F;) 

2) Temperature step N = 1 

I. Search for new solution with cost function (Fj) 

II. Compare (F;) and (Fj) 

III. Accept the new solution if (F;) > (Fj) 
or 

If (Fi) < (Fj) use Metropolis criterion. 

3) Repeat steps 1-111 for specified number of iteration in K1 = 1 

4) Reduce initial temperature by using cooling rate 

5) Start from step 2 with next temperature step N + 1 

6) Terminate if stopping criterions is met. 

Figure 3.1 A simple procedure of Simulated Annealing 
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3.2.1.1 Parameters for implementing Simulated Annealing Algorithm 

In order to be able to implement Simulated Annealing to address optimisation problems, 

the configuration space, new solution generation mechanisms, the cost function and a 

cooling schedule have to be decided (Sundermann, 1996). Besides these points, Pirlot 

(1996) also found the choice of stopping rule an important parameter for the Simulated 

Annealing optimisation. These are the major elements of a Simulated Annealing 

algorithm and are described below. 

1. Configuration Space 

The configuration space is the main functional area where the algorithms operate to 

generate the optimum solution. It comprises all the elements of a control variable; 

therefore, the representation of a configuration space is dependent on the problem type. 

In the Travelling Salesman Problem, the cities to be visited are represented by an 

integer number from 1 to N and the configuration is found by the permutation of these 

integers (CUP, 1992). Grid cells have been used for spatial representation of the logging 

area in harvest scheduling problems (Boston and Bettinger, 1999) and land allocation 

problem (Aerts, 2002) and by pixel intensities in phantom images (Sundermann, 1996). 

The type of problem itself and the decision variables determine the representation of the 

configuration space. 

2. New configuration generation 

The algorithm searches for an optimum solution starting with an initial solution or 

configuration. A transition to this initial configuration is made to create a new 

configuration through applying a predetermined procedure. The successive generation 

of new solutions is a prerequisite for reaching the final solution. This involves a small 

change in the original configuration (van Laarhoven and Aarts, 1987) and is called a 

neighbourhood solution. The searching strategy should ensure that it reaches all feasible 

solutions (CSEP, 1996) to be able to find a global optimum solution. A new solution is 

generated from the current solution by bringing a small change in it (Tuyttens et al., 

2000) and this process is repeated until the stoping rule is met. Insertion, interchange 

and one position random change are different techniques for creating the neighbourhood 

solution (Kim and Kim, 1996). Some mathematical equations have also been used for 

generating new solutions from the neighbourhood solutions (Vanderbolt and G., 1984; 

Parks, 1990). Aerts (2002) applied an interchange or swap method in solving a MO LAA 
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problem as it does not bring about any change in the number of cells allocated to each 

land use type. However, each neighbourhood solution may or may not improve the cost 

function. This process may play a crucial role in finding the global solution and also in 

determining the computational efficiency. 

3. Cost function 

The goal in using the Simulated Annealing algorithm is to improve the cost function 

most closely approaching the global optimum. In a combinatorial optimisation problem, 

the objective function has been called the cost function, which is to be minimized or 

maximized. The cost function is assessed after each move and the decision to accept or 

reject is made based on the cost function values and the Metropolis criterion. The 

objective function or cost function for some classical combinatorial optimisation 

problems are given below. 

In Travel Salesman Problem, the objective function (F) for N numbers of cities 

represented by coordinates (xi, yi) is given below (see CUP, 1992): 

N 

Minimize F = L~(x; -x;+1) 2 +(y; -Y;+1) 2 

i=l 

Equation 3.4 

In a Positron Emission Tomography (PET) image reconstruction problem, Sundermann 

(1996) changed the classical cost function by introducing the logarithm of the likelihood 

and removing the constant term; it becomes as in Equation 3.5. 

Minimize F = L PJ ln PJ - PJ Equation 3.5 
i,j 

4. Cooling schedule 

In the Metropolis algorithm, the molten solid is cooled down by successive lowering of 

the temperature until it reaches a ground state. This process of cooling is described as 

the cooling schedule. Based on how slowly the temperature is reduced, the cooling 

schedule can be annealing or quenching (Kirkpatrick et al., 1983). The cooling schedule 

is critical to the performance of Simulated Annealing as it determines the degree of 

uphill movement permitted during the search and is therefore crucial for the overall 

performance of the algorithm (CSEP, 1996). To describe a cooling schedule, one must 

decide on the initial temperature, the cooling function and number of iterations per 

temperature step. 
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I. Initial temperature 

The value of temperature or the control parameter determines the rate of acceptance of 

the deteriorated cost function in Simulated Annealing (Pirlot, 1996). At the high initial 

value of temperature, the value of the Metropolis criterion tends to be near to one and 

all the higher cost functions will be accepted. As the temperature goes on decreasing, 

the chances of uphill moves by selecting a higher cost function will diminish gradually 

and only the lower cost functions are selected. 

In order to escape from the local minimum through accepting even the deteriorated cost 

function, the initial temperature should be quite high. There is no obvious rule for 

determining the initial temperature. However, van Laarhoven and Aarts (1987) 

suggested that the initial temperature should be able to accept about 80 percent of all the 

higher cost functions and is possibly determined by random trial with different 

temperatures. The range and distribution of the decision variable determine the initial 

temperature or control parameter. A method has been proposed by Sundermann (1996) 

to estimate the initial temperature that allows acceptance of about 82% of non­

improving cost function from only one trial run. 

II. Cooling function 

The initial temperature or the control parameter should be decreased after reaching a 

steady state or the thermal equilibrium. In the annealing schedule, the rate should be 

very slow and there should be enough transition to reach thermal equilibrium. 

Kirkpatrick et al. (1983) used an exponential cooling scheme for decreasing the 

temperature by 90 percent. This cooling rate is simply found by multiplying the 

temperature (Ti) by a constant factor (r), as given by the equation below. 

Ti+I = r *Ti Equation 3 .6 

The value of the constant factor should be greater than zero and less than one and is 

determined iteratively for each problem. Van Laarhoven and Aarts (1987) suggested the 

best value of r is in between 0.8 and 0.98. Sarkar and Newton (2001) claimed that the 

performance should not be sensitive to the r value in robust Simulated Annealing. 

Randelman and Grest (1986) used a linear cooling scheme, where the temperature is 

decreased by the L1 T after a defined number of iterations (L ), as given by Equation 3. 7. 
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T;+1 = T; -LIT Equation 3.7 

The rate of cooling is vital to improving the quality of a solution. The slower cooling 

rate requires more computational time but yields a better solution than the faster rate 

(Randelman and Grest, 1986). In theory, the temperature should decrease at the 

logarithmic cooling rate. However, the geometric schedule has wider application in the 

algorithm implementation, giving a better result with much less computational effort 

(Hajek, 1988; Pirlot, 1996). 

Other cooling functions available to freeze the system after starting at a very high value 

are as by Equations 3.8 and 3.9 (Luke, 2002). 

T;+ J = To - i (To - Tn) / N 

I';= To -JA 

Equation 3.8 

Equation 3.9 

where I'; is the control parameter at i th steps and r is a constant factor for reducing the 

control parameter. T0 is the initial control parameter. N is the number of control 

parameter steps. Tn is the final value of the control parameter. A is a function of 

Figure 3.2 illustrates the cooling of the initial control parameter (2000) by different 

cooling functions against the number of cooling steps. The final temperature 0.043029 

was reached after 103 temperature steps by the cooling function given by the equation 

3.6. The initial control parameter dropped very quickly in the first quarter of the cooling 

steps. This cooling function reduced about 86 percent of the initial value in 20 steps and 

then the value decreased slowly. The cooling function (Equation 3.7) reduced the initial 

value linearly and decreased it to about half (1000) in 51 steps. The cooling function as 

given by equation 3.9 happened to be the slowest cooling rate in the first half of the 

steps and reduced the initial value to 1368 in 51 steps. 
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Figure 3.2 Cooling of initial control parameter by different cooling functions 

III. Iterations per control parameter (temperature) step 

The number of iterations per control parameter (temperature) step should be enough for 

the system to reach a steady state (Kirkpatrick et al., 1983; Sundermann, 1996) and is 

called the epoch length (Kim and Kim, 1996). The number of iterations per control 

parameter (temperature) step is generally dependent on the size of the problem and is 

independent of the number of temperature steps (CSEP, 1996). A new criterion such as 

a minimum number of transitions to be accepted at each temperature step may also be 

used as an alternative to the specified number of iterations per control parameter 

(temperature) step. When either of these conditions is met, the iteration is stopped 

(CSEP, 1996). 

5. Stopping rule 

The main aim of the algorithm is to find an optimum solution. As soon as the optimum 

solution is reached, the algorithm has to be stopped. The point at which it will be 

stopped can be assessed by the situation, that is, when there is no further improvement 

in the cost function throughout a temperature step (CSEP, 1996). Pirlot (1996) has 

explicitly defined this criterion in two ways: a) if the cost function is not better off by a 

defined percentage ( e1 % ) even after a certain number of transitions (K1); or b) if the 

cost function is not accepted for specified percentage ( e2 % ) of the iteration (L) for the 

transition (K2). The values of e1 and e2 can range from one to five percent. 

Another stopping rule may be a threshold on the computation time to terminate the 

algorithm after reaching the specified computation time (Kim and Kim, 1996). The final 
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temperature value can also be a stopping criterion in some cooling functions. If the 

minimum temperature is prescribed in the algorithm, obviously the algorithm is stopped 

at that point. The total number of solutions to be generated can also be prescribed as the 

stopping criterion in the algorithm (CSEP, 1996). 

In problems where multiple local minimum situations exist, it is often difficult to find 

the global optimum by other optimisation techniques like Newton's method, the 

Simplex method or the Least-squares method, unless the search is started quite close to 

the global minimum. These methods follow the search only in the local gradient 

towards the minimum and therefore, are not able to look for a global minimum located 

somewhere else (CSEP, 1996). Kirkpatrick et al. (1983) described the Simulated 

Annealing algorithm as a global optimisation technique applicable even in problems 

with several local minimums. The major advantage of Simulated Annealing in the 

optimisation is the chance of escaping from the local minimum through accepting the 

new state with a higher energy level. Although there is a temporary rise in the objective 

function, the move enables the gradient to be overcome and thus escape a local 

minimum. It means that the problem of convergence at the local minimum is overcome 

by probabilistically accepting the move with higher energy. This algorithm has wider 

application and scope for many instances of combinatorial optimisation problems and 

therefore, has been categorically defined as a general approximation algorithm. 

3.2.1.2 Applying Simulated Annealing to a MOLAA problem 

The application of the Simulated Annealing algorithm to a land allocation problem has 

already been shown to be effective (see Aerts, 2002; Aerts and Heuvelink, 2002). The 

allocation of three land use types (forest, water and shrubs) was demonstrated in a case 

study of the As Pontes mining area in Spain. The aim of the optimisation was to 

minimize the development cost (Cuk) by allocating these land uses to a desired 

percentage of the area. The cost function based on development cost only was given by 

Equation 3.10. 

K N M 

Minimize F = LLLCukxUk Equation 3 .10 
k=I i=l j=O 

Where Xifk is the binary variable and becomes 1 when cell ij is assigned with land use k 

and zero otherwise. Aerts (2002) estimated the cost value for each pixel using only two 
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land attributes (elevation and slope) for three land use types (forestry, shrubs and 

water). The cost in dollars was estimated by using Equation 3.11. 

CK= Gk x elevation+ bk x slope Equation 3 .11 

Where CK is the cost for land use k; Gk and bk are parameters specific to the land use 

type. Aerts (2002) applied values between 1 and 1.5 for elevation and between 1.5 and 

3.0 for slope. 

The spatial compactness function was added in the previous development cost model to 

enhance compactness by rewarding the allocation of the same land use type in the four 

neighbourhoods by using a compactness factor (/J). Then, the objective function became 

as below (Equation 3.12): 

K N M K N M 

Minimize F= LLLCukxUk _ fiLLLbukxUk Equation 3.12 
k=l l=l j=l k=l i=l j=l 

In applying the algorithm to this problem, the initial temperature was found by iterative 

searching of 80 percent acceptance of the higher cost function. The temperature was 

reduced by 80 percent after completion of 1000 iterations at every temperature stage. 

The initial solution was obtained by random allocation of land uses satisfying the 

desired percentage of areas. The compactness factor (/J) with value 3 was found to be an 

appropriate trade-off between the development cost and the compactness. The algorithm 

was implemented following a simple procedure of Simulated Annealing (see Figure 

3.1). A diagrammatic representation of the use of Simulated Annealing in solving a 

MOLAA problem is shown in Figure 3.3. Every iteration produced a new solution by 

swapping land uses between two randomly selected cells. The new cost function was 

assessed to accept or reject the new solution as determined by the Metropolis criterion. 

The algorithm was stopped when there was no more improvement in the cost function. 

This case study revealed a realistic solution to the problem and also demonstrated that 

Simulated Annealing could handle large size land allocation problems on a grid of 525 

by 525 cells. 

60 



...... 
+ z 
0. 
B 
"' .... 
I< 
Q) z 

r.._;-. .... 
"' 0 
u 

= ~ 
;::l 
u 

Decide on initial control parameter, cooling 
function (cooling rate), swapping rate and 

initial input solution 

Estimate the cost function F; of the 
initial/current solution 

Randomly choose a land unit for 
swapping 

Randomly chose neighbourhood 
land units 

Swap the land use with (a) and 
estimate the cost function Fi 

Is Metropolis criterion > Random 
number between 0 & 1 

no no 
is met 

es 

Reduce the control 
parameter 

If stopping 
criterion is met 

Stop 

n 

i 
(') 

0 

"' ...... 

Figure 3.3 Flow chart for Simulated Annealing algorithm in solving a 
MOLAA problem 

3.2.2 Tabu Search algorithm 

Tabu Search (TS) evolved from a local search method by incorporating a new strategy 

of preventing the algorithm to be trapped at a local minimum (Voudouris, 1997). This 

algorithm was independently developed to solve combinatorial optimisation problems 

by F. Glover and P. Hansen and applied to nonlinear covering problems and maximum 

satisfiability problems, respectively (Glover, 1989). The algorithm follows an iterative 

process and tries to improve the solution by searching for a better solution from the 

neighbourhood. The strategy relies on some long-term or short-term memory structure 

to restrict cycling of the search without improvement in the objective function and also 
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helps to avoid local minima. The conditions unique to a problem are set out and stored 

in these memories. A solution in the neighbourhood qualifies as a potential move, if the 

conditions are met; otherwise, the move is restricted (Cvijovic and Klinowski, 1995). 

Those 'forbidden' moves are regarded as 'Tahu', signifying 'sacred' in some Pacific 

Island languages or forbidden in a general sense (Glover and Laguna, 1997). It is 

similar to Simulated Annealing, in that it also uses a guided procedure to accept a worse 

solution in order to escape from being trapped at the local minimum (Glover et al., 

1993). Continuous advancements in this technique have made it efficient and widely 

applicable to combinatorial optimisation problems in many fields (Glover, 1989; Glover 

et al., 1993). This algorithm has been successfully applied to forest harvest scheduling 

(Richards and Gunn, 2000), quadratic assignment problems (Heffley, 1972; Taillard, 

1991) multiple minima problems (Cvijovic and Klinowski, 1995) and continuous 

optimisation problems (Chelouah and Siarry, 2000). 

A simple procedure for Tahu Search is widely described in the literature (Glover, 1989; 

Glover et al., 1993; Cvijovic and Klinowski, 1995; Pirlot, 1996). The algorithm starts 

with an initial solution x1 in X and searches for the best solution x * within the 

neighbourhood V(x). The cost function F* and the solution x* are both accepted. If none 

of the moves in the neighbourhood are better than the current solution Xn, the solution x 

which least degrades the solution, is accepted in the neighbourhood V(x). This strategy 

enables the local minimum situation to be overcome. If the solutions x and Xn are 

members of same neighbourhood structure V(x) or V(x,J, it is likely that the search 

process may cycle between x and Xn solutions repeatedly. The essence of a Tabu Search 

is that it avoids this cycling by creating a short memory called a Tabu list, where the 

attribute of solution xis stored. The Tabu list stores a specified number of solutions (L) 

and restricts acceptance of these items unless they are released from the list. However, 

the algorithm uses aspiration level in order to release the restriction posed by the Tabu 

list to the 'good enough solution'. The search process proceeds until the stopping 

condition is encountered. Figure 3.4 summaries a simple procedure of Tabu Search as 

given by Glover et al. (1993). Several researchers have shown the benefits of Tabu 

Search over Simulated Annealing in terms of computation time and quality of the 

solution for various combinatorial optimisation problems. 
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Begin 

1) Initial feasible solution 
define Tabu move and Tabu length (TL) 
current cost function (Fi) 

2) Iteration step N = 1 

I. Search for new solution in the neighbourhood with cost function (F*) 

II. Compare the neighbourhood and select the best with (F;) 

III. Accept the new solution if (Fi) > (F;) 
or 

If (Fi)< (F;) apply criterion for acceptance or rejection. 

3) Repeat steps I-III for specified number of iteration in N = 1 

4) Start from step 2 with next iteration step N + 1 

5) Terminate if stopping criterions is met. 

End 

Figure 3.4 A simple procedure for Tabu Search algorithm 

3.2.2.1 Elements of Tabu Search 

Tabu Search shares the same description as for the Simulated Annealing for the 

configuration space, the neighbourhood structure, a new solution generation mechanism 

and the objective function or cost function, as discussed in section 3 .2.1.1. The 

following sections describe unique elements of Tabu Search. 

1. Defining neighborhood 

In optimisation, the search proceeds with finding a solution in a neighbourhood (Ns). A 

neighbourhood of solution s comprises those solutions in the whole set of solution S 

that can be reached in a single move (Cvijovic and Klinowski, 1995). The move 

restricts a search within the subset specified by Ns. The combinatorial problem and the 

search method define a neighbourhood structure (Voudouris, 1997). The neighbourhood 

is defined as a set of moves or search methods to generate a new solution from a current 

solution (Taillard, 1991). The algorithm tends to choose the best solution from its 

neighbouring solutions. This is a "greedy" search strategy and leads to a local 

minimum, where none of the neighbours improve the cost function. To escape from the 
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local minimum situation, Tabu Search also accepts a move which increases the cost 

function (Taillard, 1991). 

2. Tabu list, Tabu length and Tabu state 

The unique feature of this algorithm is a specified condition or constraint to guide the 

search process. This condition enables the cycling or reverse moves to be restricted by 

using short and long-term memory. It relies on memory by storing the solutions or their 

attributes in a list. These solutions are inaccessible for a specified number of iterations 

and are regarded as the Tabu moves. The list is called a Tabu list. The number of 

solutions stored in the list defines the Tabu length (L). A complete description of these 

solutions may be stored in the memory. However, it is more appropriate to use an 

attribute of the solution visited in the last L iteration (Glover et al., 1993; Pirlot, 1996). 

The choice of an attribute for a Tabu list is specific to a problem (Glover et al., 1993). A 

different Tabu condition may be used for the same attribute to determine the severity of 

the restriction by the Tabu move (Glover, 1989). Taillard (1991) defined a Tabu move 

by restricting any transfer between units to locations already exchanged within a 

specified number of latest iterations in a quadratic assignment problem. 

Tabu length (L) determines the number of elements in the Tabu list. A constant or 

variable list size may be used (Cvijovi6 and Klinowski, 1995). However, an appropriate 

Tabu length should be used for efficient performance of the algorithm. Neither a very 

small nor a very large Tabu length is desirable. The former leads to cycling of the move 

and the latter may be very restrictive even to good solutions (Taillard, 1991). Taillard 

suggested using variable Tabu length by randomly selecting a number between the 

defined minimum and maximum length. 

Glover (1989) introduced an array called Tabu state to simplify the implementation of 

Tabu condition. The items with the same attribute value (e.g. weight) are recorded in a 

matrix of frequency (n) and weight (r) in the Tabu state. If a weight (wq) is restricted, it 

is assigned a value of one and the rest assigned zero in the Tabu state. In an optimal 

partition problem, the Tabu list (T) records two ordered pairs for each solution in a 

circular pattern unless the specified Tabu length (L) is occupied. Once the Tabu length 

is reached, the Tabu list is made empty and released from the Tabu state. The Tabu list 

and Tabu state repeat the same process (Glover, 1989). It is more appropriate to use 

multiples of Tabu lists in this algorithm (Glover et al., 1993). One of the main aims of 
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the Tabu list is to diversify the search by enabling the current solution in the space not 

visited before to be reached (Pirlot, 1996). 

3. Aspiration level 

A Tabu list may operate in a very restrictive way and may also prevent acceptance of 

many good solutions (Taillard, 1991). A condition is used to release such good moves 

temporarily from the Tabu list to allow their acceptance. This rule is called the 

'aspiration level' in Tabu Search. The aim of defining aspiration level is to allow 

selective acceptance of promising solutions, which have been restricted by the Tabu list 

(Glover, 1989). A condition may arise where a Tabu move (m) is able to approach a 

better solution than the best solution attained so far. In this situation, it is necessary to 

accept the Tabu move (m) in order to improve the solution. Hence, the Tabu restriction 

can be released if the m meets the aspiration level. 

3.2.2.2 Applying of Tabu Search to a MOLAA problem 

A diagrammatic representation of Tabu Search in solving a MO LAA problem is shown 

in Figure 3.5. To apply Tabu Search in solving a MOLAA problem, a land unit is 

selected in the initial solution. The neighbours of the land unit are also selected and 

assessed in terms of the cost. Subsequently, the land uses are swapped between the 

selected land unit and its best neighbour in a way that minimizes the cost function 

among all the neighbours. This swapping operation produces a new solution. The 

location attributes of both land units are stored in the Tabu list to avoid cycling or 

reversing the move for the specified length of Tabu size. All subsequent moves are 

stored in the Tabu list unless the Tabu length is reached. When the iteration becomes 

equal to the Tabu length, the list is updated by replacing the first Tabu list. The 

algorithm is stopped when there is no improvement in the cost function throughout an 

iteration period. Details of the parameters used for applying Tabu Search to a MO LAA 

problem will be described in Chapter 5. 
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Figure 3.5 Flow chart for Tabu Search in solving a MOLAA problem 

3.3 Multi objective land use allocation (MOLA) 

MOLA is a GIS based decision support module devised to provide a solution to 

multiple and conflicting land use allocations. This module is based on choice heuristics 

and uses the same decision rule to solve a single land use allocation. This module uses 

an iterative process and relies on the same decision rule that is employed to solve a 

single land use allocation problem (Eastman et al., 1993). Eastman (2001) has 

elaborated the procedure as follows (Figure 3.6): A suitability map scaled in a range of 
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0 - 255 is derived for each land use combining several criteria with their relative 

weights using a multi-criteria evaluation (MCE) module (Step a). The WEIGHT module 

estimates the relative weight of each criterion by pair-wise comparison. The RANK 

module is used to generate a rank map in ascending or descending order from each land 

use suitability map by assigning 1 either to the lowest value (0) or highest value (255) 

(Step b ). This module gives rank order based on the values in the suitability map. The 

cells with the same suitability values are randomly assigned a rank order. Finally, the 

MOLA module performs iterative operations to combine the rank maps based on their 

specified weights. A land use allocation map, satisfying area requirement for each land 

use type is then generated (Step c). A secondary image may be used to prioritise the 

rank maps for resolving land use conflicts in the module. 

Criteria maps 

ODDO 

Land suitability maps (0 -;255 scale) 

:. .. : .. : .. : .. : .. ; 
l···i··!··i··!··! 
E:EEI:E~ 

Rank maps (in ascending or descending order) 

c) MOLA Module 

Final land use allocation 

Figure 3.6 MOLA procedure in IDRISI® Software 

The MOLA resolves land use conflict in a land unit (cell) based on its proximity to the 

ideal point, and assigning the cell to the land use, which has the highest-ranking weight. 

To facilitate the allocation of the desired number of cells to each land use type, each 

suitability map constitutes an axis in a multi-dimensional decision space. For instance, 

the decision space for two land uses, agriculture and conservation is shown in Figure 

3.7a. The area requirement for both land uses can be achieved by selecting the most 

suitable land units for the respective land use by moving the decision line towards the 
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origin (0) as in Figure 3.7b. However, the cells in the upper right comer where the 

decision lines overlap, are suitable for both land uses and represent the area of 

competition or conflict. To resolve this conflict, each cell is allocated to that land use 

which has the highest suitability value close to the ideal point. The ideal point is the 

extreme value in the axis, that is, 255 for both land uses. Different weight scenarios for 

the rank maps are taken into account by separating the region of conflict with a line 

originating from the meeting point of two decision lines. The angle of the line is 

proportional to the weighting of the land use. For land uses having the same weight, the 

angle of separation will be 45 degrees (Figure 3.7b). Conflict resolution is carried out in 

several iterations to achieve the area required for each land use. 
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Figure 3.7 Decision space for MOLA (a) and Conflict resolution rule in MOLA (b) 

3.4 Summary 

This chapter has discussed two combinatory methods and the GIS based MOLA module 

available in IDRISI software. These methods will be applied in solving the same 

MO LAA problem. Their performance will be compared by assessing the quality of the 

solution and its efficiency. Both the combinatory methods are widely applied in solving 

combinatory optimisation problems because of their ability to generate a sub-optimal 

solution in an acceptable time frame. The sub-optimal solutions tend to be close to the 

optimal solution and also superior to the solutions arrived at by local optimisation 

methods. The superiority of the solution is mainly attributed to their strategy to escape 

from the local minima, even while accepting a higher cost function. In Simulated 

Annealing, the Metropolis Criterion determines the acceptance of the higher cost 

function whereas in Tabu Search, the short term and long term memory and the stated 

condition restrict the cycling of the move and also avoid being trapped in the local 

minima. These methods were also discussed in the context of their application to a 

MOLAA problem. 

68 



The MOLA module in IDRIS! was also described in detail, illustrating the decision 

space and decision rule for conflict resolution between multiple land uses. A research 

framework for applying these methods to the same MOLAA problem will be described 

in the next chapter. Chapter 4 describes the detailed implementation of these methods 

after designing the MOLAA problem. 
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Chapter 4 

RESEARCH FRAMEWORK AND STUDY SITE 

4.1 Introduction 

This chapter will focus on the research framework which provides the research direction 

to this study in order to achieve the objectives stated in Chapter 1. The framework 

constitutes several sequential steps that are discussed here. The research site and the 

datasets used for this research will also be discussed in this chapter. 

4.2 Research framework 

Besides the optimisation methods, the land use suitability models, the parameters 

specific to the combinatorial methods and also the generation of initial solutions may 

influence the optimisation process and the solutions reached from the combinatory 

methods. All these elements have been taken into account in designing the framework 

for this research, as illustrated in Figure 4.1. This research framework is based on the 

land use decision-making framework discussed in Chapter 2. Each of these steps is 

described briefly in the following paragraphs and the details of the actual procedure will 

be discussed in Chapter 5. 

1. Identify the stakeholders 

The initial step is to identify the stakeholders, that is, those who have an interest in and 

would like to take part and contribute to land use planning processes in the region. It 

includes the local people, communities, interest groups or lobby groups and government 

institutions. This research applies to a hypothetical land use allocation problem in the 

Kioloa region. Therefore, stakeholders are not actually considered in this research. 
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Figure 2.1 
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Figure 4.1 Research framework for comparing three different methods for 
solving a MOLAA problem 

2. Land use issues and objectives 

In the Kioloa region, different social, economic and environmental issues relating to 

land resource were considered in order to specify the land use objectives for the area. 

The land use issues and objectives are discussed in the process of designing a 

hypothetical MO LAA problem in the Kioloa region. 

3. Land use types and area requirement 

The land resource should be used to mitigate the land use issues or to derive land use 

objectives. These land use issues and objectives were translated into one or more land 

use types for both problems. After deciding on the land use types, one key question was 

to decide on the area to be allocated to each land use type. For a hypothetical MOLAA 

problem in the Kioloa Region, the selection of land use types and their area requirement 

is discussed in Section 5.3.1 in Chapter 5. 
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4. Selection criteria and preferences 

After identifying the desired land uses and the area required for each land use type, the 

stakeholders should provide their criteria for assessing land use suitability for the land 

use types. Their preferences on each criterion for a specified land use type used to 

combine multiple criteria into a single suitability. For the hypothetical problem, the 

criteria were selected based on the availability of datasets at the ANU, personal 

experience and the literature. 

5. Land use suitability models 

The classification of the attributes used for representing different criteria and also the 

rule of combination resulted in variations in the land use suitability models. The 

classical methods include ordinal and continuous classification of attributes. The Fuzzy 

method is now also emerging as an appropriate technique for land evaluation (Kollias 

and Kalivas, 1998). These methods have already discussed in Chapter 2. For assessing 

the appropriateness and applicability of the land use suitability model, this research uses 

all three land use suitability models derived by classifying all land use criteria using the 

ordinal, continuous and fuzzy scales. The details of attribute classification are discussed 

in Chapter 5. The Weighted Linear Combination (WLC) method was used to combine 

the criteria for each land use (discussed in the Chapter 2). 

6. Applying MOLA module in IDRISI® 

The land use suitability models derived by using the ordinal and continuous scale were 

used as input to the MOLA module in IDRISI® for allocating desired land use types by 

meeting the area requirements of each land use type. The results of applying MOLA to 

the MOLAA problem are presented in Chapter 6. The land use allocation by MOLA 

will be compared with the solution generated by the combinatory methods (Chapter 9). 

7. Cost suitability model for combinatory methods 

The combinatory methods aim to minimize the cost function in solving the MOLAA 

problem. Therefore, it is appropriate to use land use suitability models where the lowest 

value represents the highest suitability and vice versa. In the land use suitability models 

created in Step 5, the higher value signifies the higher suitability and the models are not 

appropriate to apply in the combinatory methods. Hence, these land use suitability 

models are transferred into cost suitability models, where the lowest value (cost) 
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represents the highest suitability and the highest value (cost) represents the least 

suitability. This procedure is explained in Chapter 5. 

8. Initial input solution for combinatory methods 

The combinatory methods require an initial solution upon which these methods act to 

produce a final solution. The performance of an algorithm may be influenced by an 

initial input solution (Thesen, 1998). This research used three different initial input 

solutions generated by random, cheapest and greatest difference allocation of land uses. 

In the case of a MO LAA problem, an initial solution was generated by merging the cost 

suitability models of all land use types, meeting the specified area requirement for each 

type (discussed in Chapter 5). 

9. Apply Simulated Annealing and Tabu Search 

Although the application of Simulated Annealing to a MOLAA problem has been 

shown to be effective (Aerts, 2002; Aerts and Heuvelink, 2002), the paper did not 

discuss how one should select an annealing schedule for running the algorithm for a 

MOLAA problem. The annealing schedule includes an initial control parameter, a 

cooling function, the number of iterations per control parameter step, the length of 

control parameter steps and the final control parameter. These parameters were 

explained in Chapter 3. Among these parameters, the cooling function is the most 

crucial to the 'annealing' process and controls the performance of the algorithm. Three 

different cooling functions as given by the Equations 3.6, 3.8 and 3.9 were chosen in 

order to compare their influence on improvement in the cost function. The algorithm 

with different annealing schedules was applied as found by the combination of four 

values of initial control parameters, four cooling rates and four swapping rates per 

control parameter step to the initial solution of the ordinal, continuous and fuzzy models 

generated by the random, cheapest and greatest difference methods. 

Likewise, the appropriate parameters for implementing Tabu Search were found by 

testing for different Tabu lengths, neighbourhood sizes and new solution generation 

techniques for improving the cost function to its minimum value. The choice of 

parameters for both the algorithms is described in Chapter 5. The results of applying 

Simulated Annealing and Tabu Search are presented in Chapters 7 and 8, respectively. 
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10. Compare the solution by different methods 

The solutions from both algorithms were compared with the solution from the MOLA 

module in terms of cost minimization, the run time, spatial compactness and the input 

model requirement (see Chapter 9). 

11. Incorporating the compactness function into the algorithms 

Having the same land use type in the neighbourhood is rewarded by adding a 

compactness function into these algorithms, as discussed in Chapter 3. The solutions 

obtained after incorporating the compactness function by Simulated Annealing and 

Tabu Search were compared through assessing their quality in terms of the cost function 

and the land use compactness. 

4.3 The Study site 

The Kioloa region was chosen for designing a hypothetical MOLAA problem because 

of the availability of good digital datasets for the region at the ANU and easy access to 

the site (around 3.5 hours drive from Canberra). Figures 4.2 shows the location of the 

Kioloa Region on the map of Australia. The research will use three different problem 

sizes: large size grid (525 X 525 cells), medium size grid (100 X 100 cells) and small 

size grid (10 X 10 cells) for comparing the performance of these methods at different 

sizes of the planning unit. A brief description of the Kioloa region and its datasets is 

given in the sections that follows. 

.. .. + 

Figure 4.2 Location of the Kioloa Region on the map of Australia 
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4.3.1 Kioloa Region 

The Kioloa region is on the South-East Coast of New South Wales, Australia and is 

located between S35°3o'oo" and 35°3?°30,,latitude and El50°15'00" and 150°30'00" 

longitude. The boundary and extent of the region are the same as for the Kioloa 8926-

1 N topographical map (1 :25000) of Australia (LIC, 2000). The Kioloa map covers an 

area of 15.75 square kilometres. The entire Southeast boundary is the East coast of 

Australia, which abuts the Tasman Sea. Pebbly, Merry, Kioloa, Shelly, Racecourse, 

Murramarang, Gannet, Cormorant and Bawley are among the well-known beaches on 

the South Coast of New South Wales. 

4.3.1.1 Land use 

The Kioloa Region the region comprises both coastal areas on its Southern frontier and 

the mountain ranges on the North. It also includes two prominent inland water bodies -

Willinga Lake and Durras Lake, located in the upper North-East and lower South-West 

corners, respectively. Together with the Tasman Sea, the permanent water features 

cover about 28.26 percent of the total area and the rest of the area is land. 

Based on land uses, the region can be categorised into conservation areas, state forest, 

open land and residential areas. Table 4.1 gives the estimated areas of land under each 

land Ut,c.' type. State Forests covers the largest area with 38.5 percent of the total which 

includes seven separate Reserves or National Parks. The conservation area has the 

second highest area coverage with 32.31 percent of the total land. Murramarang 

National Park has the largest area occupying 31.8 percent of the total land. Meroo 

National Park together with two tiny Nature Reserves located on Belowa and Brush 

Islands and one Aboriginal Area comprise the rest of the conservation area. The open 

land and residential areas have the lowest area with only about 0.93 percent of the total 

land. The open land includes grassland and agricultural land in the Kioloa Region. The 

residential areas are mostly located adjacent to the coast. 

Table 4.1 Area coverage of different land uses in the Kioloa region 

S.N. 
1 
2 
3 
4 

Land use 
Water bodies (including Sea) 
Conservation Area 
State Forests 

land and residential area 
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No of cells 
77896 
89068 
106102 
2559 

Areain 
28.26 
32.31 
38.50 
0.93 



4.3.1.2 Geology 

The Kioloa Region includes seven different geological types. The Ordovician rocks are 

the most abundant geological type. These rocks are mostly composed of shales and fine 

sandstones. The Permian rocks are found with sandstones and shales in some places and 

have been categorised into three types: Snapper Point Permian, Pebbly Beach Permian 

and Wasp Head Permian. These are part of the Sydney Basin formation (Lees, 2002). 

4.3.1.3 Vegetation 

The Kioloa region is very diverse in terms of vegetation, having about 450 species 

assembling into 30 forest communities and 7 forest types (Moore et al., 1991 ). 

Sclerophyll forests with different eucalyptus species dominate the region. These forest 

types constitute Dry Scelerophyll (Eucalyptus botryoides), Wet Scelerophyll 

(E.maculata), Dry Maculata (Corymbia maculata as over storey) Wet Maculata 

(Corymbia maculata; Eucalyptus pilularis) However, a few patches of warm-temperate 

rain forest contribute to the vegetation diversity in Kioloa. The wide diversity and 

complexity of the vegetation in the Kioloa Region has been the research subject for 

vegetation classification (Moore et al., 1991; Fitzgerald and Lees, 1994; Fitzgerald and 

Lees, 1996; Huang, 2003). 

4.3.2 The datasets for the Kioloa Region 

The major datasets for the Kioloa region include a vegetation map, a digital terrain 

model, a geology and map of road. These are all available at the School of Resources, 

Environment and Society at the Australian National University, Canberra, Australia. 

Table 4.2 provides a summary of the datasets and a brief description of each dataset is 

given in the following sections. 

Table 4.2 Summary of the datasets for the Kioloa region 
·--· -N~=--· _,_ 

S.N. Dataset Data Resolution Source 
1 Vegetation map Raster 30 x 30 (James, 2004) 
2 DEM Raster 30X30 (ANU, 1997a) 
3 Geology Raster 30X30 (ANU, 1997b) 
4 Road Vector (ANU, 1997c) 
5 Reserve Boundary Vector ~SWN?WS,20~4) 
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4.3.2.1 Vegetation map 

Landsat Thematic Mapper (TM) image (2000) was used for generating a vegetation map 

for the Kioloa region. The image is version 6.3 and the last update was done on 4th 

March 2003. The image constitutes six bands: 1,2,3,4,5 & 7. The spatial resolution of 

each cell is 30 metres by 30 metres and matches exactly the topographical map of the 

Kioloa Region. A vegetation map for the Kioloa region was derived by James (2004) 

from unsupervised classification of Landsat image followed by field checking. Two, 

four and seven bands of the image were used for initial classification (James, 2004). A 

vegetation map derived from the false colour composite image of the region is shown in 

Figure 4.3. 

4.3.2.2 Digital Elevation Model and its derivatives 

A digital elevation model (DEM) or digital terrain model ( dtm) of the Kioloa Region is 

available in raster format with 30 by 30 metre resolution (Figure 4.4 ). This model was 

derived by fitting the continuous surface over the contours using the interpolation 

technique and then changing into it a raster. Each pixel gives the actual mean height of 

the cell and ranges from 0 - 279 metres. 

Legend 

- Rain Forest 
woodland 
Wet Scelerophyll 
Heath/Woodland 

- Bare Ground 
D Dry Scelerophyll 
~Heath 
~ Dry Maculata 
- Sparse Pasture 
D Good Pasture 
LJNodata 

3000 0 

N 

+ 

3000 6000 Meters - -- -
Figure 4.3 Vegetation map of the Kioloa region 
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3000 0 3000 6000 Meters - -- -
Figure 4.4 A digital elevation model of the Kioloa region 

Slope, aspect and drainage network datasets were derived from the DTM using 

Arclnfo® for the Kioloa Region. Slopes range from 0-36.72 degrees and the higher 

slopes coincide with the high mountainous areas. In the aspect dataset, the plain areas 

are represented by -1 whereas the mountain areas get an aspect value up to 359 degrees. 

The stream network is based on flow direction derived from the DTM. To apply stream 

network as a criterion for determining the wetland, only 3 and 4 stream orders are 

considered and expanded to double the pixel size (60 metres). 

4.3.2.3 Geology dataset 

There also exits a digital dataset for the geological types of the Kioloa Region at the 

ANU. The major geological types of the Kioloa region have already been described 

above. These geological types are represented on a nominal scale (1 to 7) by assigning 

one class to each geological type. The frequency of each geological type is given in 

Table 4.3. 

Table 4.3 Distribution of geology type in the Kioloa Region 

S.N. Geological type 
1 Quaternary Alluvium 
2 Tertiary Essexite 
3 Snapper Point Permian 
4 Pebbly Beach Permian 
5 Wasp Head Permian 
6 Ordovician 

Source: Lees (2002) 

Area (Hectares) 
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Figure 4.5 A geological dataset of the Kioloa Region 

4.3.2.4 Roads and tracks dataset 

The road and tracks in the Kioloa Region have been digitised and were saved in 

separate vector files in Arclnfo®. The road vector file comprises bitumen roads 

including the Princes Highway (Al) passing through from north to south and 

Murramarang Road along the coast. These roads are permanent infrastructure in the 

region and therefore will not be subjected to any new land use allocation. The tracks 

include access roads to forests and also many gravel roads in the region. 

4.3.2.5 Park boundaries 

The parks boundary dataset was obtained from New South Wales National Parks and 

Wildlife Services (NSWNPWS, 2004). The dataset includes boundaries for all the 

National Parks, Nature Reserves, Regional Parks, State Conservation Areas, Aboriginal 

Areas and Historic Sites under the jurisdiction and management of NSW NPWS. The 

parks boundaries within the Kioloa region were obtained from the whole dataset. The 

region contains seven parks which include two Nature Reserves, on Brush Island and 

Belowla Island. These islands are not taken into account in the MOLAA problem. 

4.4 Summary 

This chapter has discussed the research framework developed for accomplishing the 

stated objectives of this research. The framework includes eleven steps, beginning with 

the identification of stakeholders to incorporate the compactness function in the 

algorithm. These steps were discussed briefly in the context of a hypothetical MOLAA 

problem. The location, physical setting and available digital datasets of the study site 

were also discussed. Each step of the framework will be discussed in Chapter 5. 
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Chapter 5 

METHODOLOGY 

5.1 Introduction 

This chapter describes the design of a hypothetical MO LAA problem, the preparation of 

land use suitability models and the input datasets appropriate to the methods. Finally, it 

describes the implementation of each method in solving a MO LAA problem. 

5.2 Designing a hypothetical MOLAA problem for the Kioloa 
Region 

5.2.1 Land use issues and objectives 

The Kioloa region contains two national parks (Murramarang and Meroo ), two nature 

reserves (Below la and Brush islands) and the Murramarang Aboriginal area with high 

conservation values for native flora and fauna. Along the coast, there are motels and 

shopping areas providing services to increasing numbers of holidaymakers. A forestry 

operation is still active in the area and provides employment opportunities for local 

people. Agriculture and farming activities are also important for producing various 

agricultural products and livestock for supporting the local economy. From the land use 

perspective, the region is being used to meet the following objectives: 

• Conservation of native flora and fauna; 

• Conservation of soil and water quality and quantity; 

• Timber supply; 

• Development of eco-tourism and water recreation facilities; 

• Sustainable production of agriculture and livestock; 

• Developing areas for motels and other residential facilities. 

These objectives encompass social, economic and environmental issues within land use 

planning in the Kioloa region. However, some economic and conservation goals are 

incompatible. For instance, maximizing the economic benefits from timber harvesting 

and the conservation of native flora and fauna in the same land unit is impossible. 
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Hence, the attainment of an economic goal often necessitates the sacrifice of a 

conservation goal and vice versa (van Lier, 1998). The growing influx of holidaymakers 

and visitors to the region is offering the prospect of economic gain, but is demanding 

more land from conservation, agriculture and forestry land use for the construction of 

motels and other facilities. Although agricultural and forestry activities may have lower 

economic returns per unit area than the tourism business, they have their own 

importance from a production point of view. If conservation areas are used for 

development purposes, the aesthetic and natural beauty of the region may be degraded 

and it might not be as attractive a destination for visitors. Reconciliation of these 

conflicting land use objectives and the provision of a best combination of land uses to 

ensure natural integrity and sustainable development are the major challenges to be 

tackled by land use decision-making. 

The land use objectives discussed above can be met by dividing the region into four 

broad land use categories: conservation, agriculture, forestry and development. Some of 

the objectives may fall into more than one land use. To achieve the final land use 

allocation, the planner/decision maker should decide on what area is to be allocated to 

each land use type and which parameters, decision variables or criteria should determine 

the land use allocation decision. It is obvious that these land uses are a prerequisite for 

achieving the objectives stated above. If any of the land uses ceases to exist, the 

associated objectives cannot be met. In real land use planning, stakeholders and 

planners need to agree on the area required for each land use type. In this hypothetical 

problem, the land use types were prioritized in the following order: conservation, 

agriculture, forestry and development in order to meet the above objectives. The area 

requirements for these land uses were chosen to be 50, 25, 15 and 10 percent of the 

region, respectively, excluding roads, stream networks and the ocean. This represents a 

fundamental decision for land use planning and the final outcome will result in 

allocating that percentage of the land area to the respective land use category. 

A decision framework for the hypothetical MOLAA problem is presented in Figure 5.1. 

This framework establishes the objectives for each land use, some strategies for 

achieving each objective, and the criteria to be applied to each strategy. The criteria are 

determined for each social, economic and environmental parameter on the basis of a 

review of the literature, expert consultation and personal experience. These criteria form 

the basis of the land use decision-making process and allow the decision-maker to 
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incorporate the interests, values and preferences of all the stakeholders to try to achieve 

a consensus on the proposed land use. 

Conserve 
native 

Conserve Soil 
& water 

Agri. & 
livestock 

Timber 
nroduction 

Eco-tourism 
& recreation 

Sites for 
motels & 

Land use strategies for achieving above-mentioned land use objectives and types 

Identify criteria for determining suitability for each land use type 

Prepare criterion maps 

Combine relevant criteria using weighted linear combination method 

Conservation 
cost suitabilitv 

Agriculture cost 
suitabilitv 

Development 
cost suitabilitv 

Apply MOLA and combinatory methods for generating land use 

allocation alternatives 

Figure 5.1 Decision framework for a hypothetical MOLAA 

5.2.2 Determining criteria for land use types 

The criteria stated in the decision framework were translated into suitability maps for 

assessing the relative suitability of each land unit for the desired land use types. For this 

hypothetical example, altogether 17 criteria including 16 factors and one constraint were 

used. The criteria used for each land use are discussed in the following section. The 

thresholds for the best suitability and least suitability for these criteria, based on the 

literature and expert knowledge for different land uses, are given in Table 5.1. 
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Table 5.1 Thresholds for criteria used for different land use types 

Criteria 

Land Use 
Wildness/ Access Wetland Buffer Vegetation/land Slope Elevation Value View Value Beach Value Geology 

(m) (m) Cover (type) (degree) (m) (degree) (m) (type) 

Best Least Best Least Best Least Best Least Best Least Best Least Best Least Best Least 
Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable Suitable 

RF, 
Conservation > 3000 < 1000 < 150 > 600 RFE, OL, > 25 < 10 - - - - - - - -

HL 

Relative 
0.12 0.16 0.48 0.24 

weight 
RF, 

Agriculture · - - - - OL RFE, <5 > 15 - - - - - - 0 QA,TE 
HL 

Relative 
0.1 0.45 0.45 

weight 

Forestry < 500 > 3500 > 600 <300 
RF, 

<5 > 15 
RFE 

- - - - - - - -

Relative 
0.13 0.08 0.395 0.395 

weight 

Development <200 > 1500 <5 >20 > 200 < 50 
45 - > 270-

<500 > 3000 - - - -
135 <45 

- -

Relative 
0.09 0.11 0.14 0.22 0.44 

weight 
Notes: RF= Rain Forest; RFE =Rain Forest Ecotone; HL =Heath Land; OL =Open Land; DS =Dry Sclerophyll; WS= Wet 

Sclerophyll; 0 =Ordovician, WHP =Wasp Head Permian; PBP =Pebbly Beach Permian; PP= Snapper Point Permian; 

TE= Tertiary Essexite; QA= Quaternary Alluvium 
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5.2.2.1 Conservation land use 

The primary objective of conservation land use is to allocate areas of high importance 

from a natural perspective in order to protect rainforest, wetlands and wilderness. Four 

criteria maps, namely land cover type, wilderness, wetland buffer and slope were used 

to assign suitability for conservation land use (See Table 5.1). In the land cover map, 

the Rainforest (RF), Rainforest Ecotone (RFE) and Heath Land (HL) are given the 

highest conservation values. Inaccessible areas (> 3000 metre from the road) are given 

higher wilderness value than the accessible areas ( < 1000 metre from the road) from a 

conservation viewpoint. The 150 metre buffer areas on either side of the stream 

networks are considered high value for conservation of wetland areas, whereas areas 

beyond 600 m are not considered important at all. Areas with slopes above 25 degrees 

might be prone to heavy soil erosion if subjected to any other land use, therefore such 

areas are also worth conserving. Slopes of less than 10 degrees are not considered 

important for conservation for preventing soil erosion. The creation of criteria maps will 

be discussed in section 5.3. 

5.2.2.2 Agriculture land use 

The suitability of an area of land for agricultural use may be assessed by using limiting 

factors like soil fertility, irrigation facility, erosion, soil tillage and distance to markets 

(Nehme and Simoes, 1999). In this hypothetical problem, the available datasets were 

geology, slope and land cover type for assessing land suitability for agricultural use in 

the Kioloa region. Geology type was assigned as indicator of soil fertility for 

agricultural production. The slope factor was used to confine the agricultural activity to 

flat land. In the geological dataset, Quaternary Alluvium (QA) and Tertiary Essexite 

(TE) were considered the most suitable and Ordovician (0), the least suitable for 

agricultural land use. Areas with less than 5 degree slope were considered the best and 

those with greater than 15 degree slope were deemed unsuitable for agricultural use. 

Open land cover type was judged to be the most suitable and the areas of the highest 

conservation values (Rainforest/Rainforest Ecotone/Heath Land) were deemed the least 

suitable areas for agriculture (See Table 5.1). 
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5.2.2.3 Forestry land use 

The suitability of a land unit for forestry use was assessed by using four criteria maps: 

forest value, slope, accessibility and wetland buffer (See Table 5 .1 ). The potential 

timber value of the vegetation types was used to quantify their values for the forestry 

land use. In the Kioloa region, the timber from the Rain Forest, Rain Forest Ecotone and 

Low Wet forest tree species had a high market value. The land under these species was 

thus regarded as the best for forestry land use and Dry Schlerophyll, Wet Schlerophyll, 

Heath and Open land were the least valuable for forestry land use. Land with a slope 

below five degrees was considered the best and slope above 15 degrees was considered 

as the least suitable for forestry. Easily accessible land, that is, less than 500 metres 

from the existing road network, was considered the most suitable and more than 3,500 

metres away from the road was the least suitable for forestry land use, from an 

accessibility viewpoint. Areas adjacent to streams (less than 300 metres on either side) 

were considered the least suitable and 600 metres away from streams were considered 

the best land for forestry purposes. 

5.2.2.4 Development areas 

For the development area, distance from the beach, value of the view, elevation value, 

slope and access were used as the criteria for evaluation (See Table 5.1). Land at a 

distance of 500 metres from the beach was seen as the most suitable land and land that 

was more than 3,000 metres away from the beach was considered the least suitable land 

for residential purposes. Regarding view value, the southeast aspect (45 degrees to 135 

degrees) was given the highest suitability and northeast or northwest (less than 45 

degrees and greater than 315 degrees) views were the least preferred for development 

land use. A low slope (below 5 degree) and high elevation (above 200 metres) were 

considered the best and steeply sloping land (above 20 degree) with low elevation area 

(below 50 metre) were the least preferred land for development land use. Less than 200 

metres distance to the road network was considered the most suitable and higher than 

1500 metres was taken as the least suitable land for development land use. Besides these 

factors, flooding due to storm surge and elevation was considered as a constraint to 

development land use. This constraint model was incorporated into the final cost model 

for development land use. 
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5.3 Land suitability assessment approach 

The datasets available for the Kioloa region are a Landsat TM 7,. a digital terrain model 

(DTM), geology and road vectors available at the Australian National University. A 

vegetation cover or land cover map with 10 classes was derived from unsupervised 

classification and field check of the Landsat TM image using green, near infrared and 

mid infrared bands. The DTM was used to generate a stream network, slope, elevation 

and aspect model using the terrain modelling routines in the Arc Info® GIS. 

The input database of spatial data layers X comprises i rows and j columns and each 

cell can be represented by xy. 

X = { x11, x12, ............ xu} Equation 5.1 

Where Row i = 1, ........ ,I ; column,j = 1, ........ ,J. 

The set of land use types is represented by K having a set of criteria L. For xy land unit 

with land use k, the value of criterion 1 is given as follows: 

X""kl = { X""kl x··k2 XrJ (L} IJ IJ , IJ ,. . . . . . . . . . . . J Equation 5 .2 

Where land use type k = 1,2 ......... . K ; criteria l = 1,2 ......... . L 

Two different techniques were used to create land use suitability models and were 

subsequently used as inputs for land use allocation by the combinatorial and MOLA 

module in IDRISI®. 

5.3.1 Land use suitability models using ordinal - WLC 

In ordinal-WLC, a land use suitability model was created for each land use by 

combining the ordinal scale criteria maps based on their relative weights. This method 

applies equation 2.6 given in Chapter 2 for deriving a land use suitability value for each 

land unit, using the thresholds for best suitability and least suitability for these criteria 

(Table 5.1 ). The thresholds for the most and the least suitable attributes were assigned 

two extreme values, 5 and 1, in the ordinal scale respectively. The intermediate values 

4, 3, and 2 were used to signify suitable, fairly suitable and less suitable attribute classes 

of a criterion. However, the road network and stream network (excluding stream order 1 

and 2) were taken as mandatory land uses and not considered for suitability mapping for 
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the proposed land uses. The ordinal classification of each criterion was accomplished in 

Arclnfo® GIS software. The criteria, relative weights and attribute classification in the 

ordinal scale (1 - 5) are given for conservation, agriculture, forestry and residential land 

uses in Tables 5.2, 5.3, 5.4 and 5.5, respectively. 

Table 5.2 Criteria and attribute classification in ordinal scale for conservation 

Criteria 
Relative Attribute classes 

--N~~N~_, __ N __ ,, ___ , ___ ,N<~~-N---N,NN~~-

weight 1 2 3 4 5 
Slope (degree) 0.24 < 10.0 10.0 - 15.0 15.0 - 20.0 20.0 - 25.0 > 25.0 
Vegetation (type) 0.48 OL DS,DM WS,WM RF, REF, H 
Wetland (m) 0.16 600-9000 300 - 600 150 - 300 < 150 
Wildness 0.12 < 1000 1000 - 1500 1500 - 2000 2000 - 3000 3000-9000 

Table 5.3 Criteria and attribute classification in ordinal scale for agriculture 

Criteria Relative Attribute classes 
~-N~~WWW~_,,_,NNN~mmm-~~~-,~~N---nN _____ _.,,,,,_mm»m-~------

weight 1 2 3 4 5 
Slope (degree) 0.45 > 15.0 10.0 - 15.0 5.0 -10.0 < 5.0 
Geology (type) 0.45 0 WHP PBP SPP QA, TE 

~and c~ve~(!YEe},,~-· 0.1,Q_,,_ .. RF,_~F, H_, __ ,,,,,_:_,~_,DS"'R,~-~~~~-~~~-Ql;_~ 

Table 5.4 Criteria and attribute classification in ordinal scale for forestry 

Criteria 

Slope (degree) 
Accessibility (m) 
Stream buffer (m) 

,,,fOE~2!2alue (~,e) 

Relative Attribute classes 
,, ____ ,mm=-n-nmmm~~=-----,~--~-=m,_,,,_,,~,~---

weight 1 2 3 4 5 
0.395 > 15.0 10.0- 15.0 5.0 - 10.0 < 5.0 
0.13 3500 - 9000 2500 - 35001500 - 2500 500 - 1500 < 500 
0.08 < 300 300 - 600 600 - 9000 
0.395 w~, WM'.,.!!/ OL ~ps, DM L w __ ,,, R!::.,~F 

Table 5.5 Criteria and attribute classification in ordinal scale for development 
use 

Criteria Relative Attribute classes 
•m• .. "•mm•"'""-'''""''"'_, .. _.,,_.,,,~,,,,,,, .. ,_,,..,,_. .. ,~,.,n,.,_,,,_,,,_m_n,.m•mm••m••-------.., .. ,_ ,,. .... ~ ___ ,, ___ .......... ................. _ ..... _,._, ... ~ .. 

Weight 1 2 3 4 5 
Beach distance (m) 0.44 3000-9000 2000-3000 1000-2000 500-1000 < 500 
Elevation (m) 0.14 < 50 50-100 100-150 150-200 200-300 
Accessibility (m) 0.09 1500-9000 700-1500 400-700 200-400 <200 
Slope (degree) 0.11 > 25.0 15.0-20.0 10.0-15.0 5.0-10.0 < 5.0 
View value (degree) 0.22 0-45, 270-360 225-270 180-225 135-180 45-135 
Flood constraint No flood Flood risk 

After creating the basic input datasets and estimating the relative weight of each factor 

by using the pair-wise comparison method, the grids were combined using the WLC 

method to generate a land use suitability map for each land use category. Values ranged 

from 1.0 to 5.00 in land use suitability layers, representing the lowest and the highest 

suitability, respectively (Table 5.3). These land use suitability models were created by 

applying ordinal-weighted linear combination (WLC) and the suitability models are 

called ordinal land use suitability models or ordinal models. In contrast to the MCE 

module in IDRISI®, the constraint layer, that is, the flood constraint map, is 
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incorporated during the preparation of the cost suitability module for the combinatorial 

methods. The procedure will be described in section 5.4.2. 

5.3.2 Land use suitability models using continuous - WLC 

In this land use suitability model, factors like slope, elevation, distance from the road or 

stream network, were used in a continuous scale. In these data sets, the higher/lower 

value represents either the most or the least suitable area for a particular land use. For 

example, the suitability for agricultural land use will increase with lower slope value 

and the land unit becomes less suitable for agricultural use as the slope value increases. 

The models were generated in IDRISI® software and the procedure is described in the 

following paragraphs. 

First, the datasets in Arclnfo® grid format were imported into the IDRIS!® software. As 

the factor maps have different ranges of values representing relative suitability for land 

use, these maps need to be standardized in order to transform all the values into an 

identical scale. Standardization of all the factor maps to a 0-255 byte binary range by a 

simple linear stretch was carried out using STRETCH menu in IDRISI® software. 

However, in the case of factor maps like slope for agriculture, distance from beach for 

development land use, the lower value is more suitable for these land uses but 

STRETCH assigned the lowest attribute value to zero in 0-255 scale. Hence, the values 

in such factor maps were inverted by running INITIAL and OVERLAY in order to 

assign the lowest attribute value to the highest value (255) in the scale and vice versa. 

The same relative weights were used to combine relevant factor maps for each land use 

using MCE module in IDRISI® software. A Boolean constraint map was also 

incorporated in this module to exclude mandatory land uses from suitability 

consideration. The outputs from this operation generated a land use suitability model for 

each land use type. In the case of development land use, the flood constraint map was 

incorporated in the MCE module to create a suitability model for applying the MOLA 

module. In the case of combinatory methods, the flood map was used as a cost model 

and applied during the creation of the cost model. The relative suitability values for 

cells in the large grid, S ranged from 38 to 255, representing the least and the best 

suitability for the land use. These land use suitability maps generated from the factor 

maps in a continuous scale, except for the land cover type and geology, are denoted as 

continuous-land use suitability models or continuous models. The land use suitability 

models in continuous scale were finally exported to Arclnfo® software to create input 
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models (cost models) for the combinatory methods. The procedure will be described in 

section 5.4.2. 

5.3.3 Land use suitability using fuzzy - WLC 

In this method, the attribute classes of each criterion were classified in a fuzzy scale. As 

this scale ranges between 1 and 0, the best attribute class with respect to a land use is 

assigned to 1 and less suitable classes are assigned a value less than 1, based on relative 

suitability. The lower the suitability of an attribute class, the closer a value to 0 is 

assigned. Fuzzy classification of criteria was accomplished by using the appropriate 

model based on Equation 2. 10 as explained by Kollias and Kalivas (1998) (discussed in 

Chapter 2). 

In order to apply the model given by Equation 2.10 (in Chapter 2) to different criteria 

maps, three modifications of the above model were derived to suit the relative 

importance of attribute classes to land use type. 

Left hand asymmetric: This model assigns membership function 1 to above or equal to 

central value (b1). For example, classification of slope for conservation, slope equal or 

greater than 25 degree is assigned 1 (Equation 5.3). 

MF(xi) = 1 for Xj >= b1 Equation 5.3 

Right hand asymmetric: This model assigns membership function 1 to equal or less 

than the central value (b1) (Equation 5.4). For example, classification of distance from 

beach for development land use, 500 metre or less distance from beach is assigned 1. 

This function applies opposite logic to Equation 5.3. 

MF(xi) = 1 for Xj <= b1 Equation 5.4 

Optimum range: This model assigns membership function 1 to a range of attribute 

values between b1 and b2• In the case of view value for development land use, an aspect 

with between 45 degrees and 135 degrees is to be assigned 1. In this model, b 1 and b2 

may use the same (d) or different values (d1 and d2) (Equation 5.5). 

MF(xi) = 1 Equation 5.5 

The same criteria used for ordinal or continuous land use suitability models were 

classified using fuzzy sets for deriving a land use suitability model. The appropriate 
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fuzzy model and the parameters (b and d) were defined for each criterion. Table 5.6 

provides information about the criterion used, its data type (continuous or ordinal), 

selected model and parameter values. 

Table 5.6 Criteria, their data types, range of values and fuzzy model applied with 
parameter values for different land use types 

-~----· _, ___ ~----· -~·--WM><O»: ~·--X<W.«U.«'.W/. 

SN Land use and Criterion 
Data Model Parameter values 
ty Range of values applied b1 b2 d1 d2 pe 

1 Conservation 
1a Slope (degree) c 0.00-36.72 1 >=25 5 
lb Vegetation (type) 0 1-5 1 >=5 2 
le Wetland (metre) c 0.00 - 7980.00 2 <=150 150 
Id Wildness (metre) c 0.00 - 8431.00 1 >=3000 1000 
2 Agriculture 
2a Geology (type) 0 1-5 1 >=5 1 
2b Slope (degree) c 0.00- 36.72 2 <=5 5 
2c Land cover (type) 0 1- 5 1 >=5 1 
3 Forestry 
3a Accessibility (metre) c 0.00 - 8431.00 2 <= 500 1000 
3b Slope (degree) c 0.00- 36.72 2 <=5 5 
3c Stream buffer (metre) c 0.00 - 7980.00 1 >=600 300 
3d Forest value (type) 0 1 - 5 1 >=5 1 
4 Development 
4a Beach distance (metre) c 0.00 - 11621.31 2 <=500 500 
4b Elevation (metre) c 0.00 - 279.00 1 >=200 50 
4c Accessibility (metre) c 0.00 - 8431.00 2 <=200 200 
4d Slope (degree) c 0.00-36.72 2 <=5 5 

4e View value (degree) c -1.00- 359.421 3 
>=45, <45, 

10 10 
<=135 >135 

The fuzzy classification of each criterion was accomplished by writing an AML (Arc 

Macro Language) and running it in the Grid of Arclnfo®. The criteria maps for each 

land use types were combined by applying the same weighting to each criterion as in 

ordinal and continuous methods. The Boolean map of mandatory land use was also 

incorporated into the land use suitability models for all the land uses to exclude these 

areas from allocation. The relative suitability values ranged between 0.00001 and 

0.62576 in the land use suitability maps generated by the fuzzy method. 

5.4 Land use input models for different methods 

5.4.1 For MOLA 

5.4.1.1 Ordinal land use suitability model 

To apply the MOLA module to the hypothetical MOLAA problem, a land use 

suitability model for each land use was created in an ordinal scale using MCE module in 
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IDRISI® software. All the criteria maps in ordinal scale were imported into the IDRISI® 

software from Arclnfo® software. The data in these files were stretched on a 0 - 255 

scale using CONVERT module. All the cells with value 1 in Arclnfo ® grid were 

changed to 51 and the cell value 5 was changed to 255 in the stretched files. NODATA 

and flood constraint grids were also imported in Idrisi raster format as Boolean maps 

and converted into byte binary format. The MCE module combined all the factor maps 

by using the Weighted Linear Combination method and produced a land use suitability 

map for each land use as output. In the case of the development land use, the Boolean 

constraint map for flood prone areas was also incorporated in the MCE module. All the 

cells in the constraint maps (mandatory land use and flood prone areas) were assigned 0 

in these land use suitability models. A small grid of 10 by 10 cells was cut from the 

large grid to analyse the land allocation by MOLA. 

The MOLA module in IDRISI® uses cell value in the input model for allocating land 

use that meets the specified area requirement for each land use type. To facilitate the 

comparison of the cell values in different input models, ranking of all the cells in the 

MCE suitability model was accomplished using RANK module, in ascending order 

according to their cell value. In the rank output files, the cell with the highest value in 

the suitability module was assigned 1, the second highest value 2 and so on. The cells in 

the constraint areas with 0 value in the suitability modules were also ranked. Those cells 

with the same value were ranked, randomly assigning a unique value to each cell. 

These rank files were used as inputs to the MOLA module. The land use suitability 

models in the small grid were also ranked using the same module. 

5.4.1.2. Continuous land use suitability model 

The same procedure as described in Section 5.4.1.1 for the ordinal land use suitability 

model was used to create rank maps of the continuous land use suitability model. 

5.4.2 For Combinatorial methods 

Combinatory methods yield an optimum combination of multiple land uses through the 

process of minimization of the cost function. To be able to employ the land use 

suitability model in terms of land use cost, the suitability models were converted into 

cost suitability models (CSM) or cost model using Equation 5.6. 
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CSM = [( 1 J x constraint cost model] x Factor Equation 5.6 
suitability model 

In this equation, the suitability maps are inverted in order to change the highest 

suitability value to the lowest cost value and the lowest suitability value to the highest 

cost value. For example, the highest suitability value (5.0) in the ordinal model was 

transformed to the lowest cost value (0.2) and the lowest suitable value (1.0) to the 

highest cost value (1.0). However, these suitability models were based on factors only 

(see sections 5.3.1). If there are constraints on any land use alternative, they need to be 

incorporated in the cost models. In multi-criteria evaluation, a constraint imposes a 

restriction on a specific land use and the areas under constraint are excluded using 

Boolean logic, assigning zero to the area under constraint and one to the rest of the area, 

as discussed earlier in section 5.4.1.1 (Eastman et al., 1993). The application of this 

logic to any land use cost model will reduce the area under land use consideration. To 

maintain the integrity of the input datasets, the areas under constraint should also 

remain in the decision space. An area under constraint may also offer suitability for a 

particular land use due to exhibiting several suitability factors but comparatively less 

suitability than the area without constraint. 

In some circumstances, a constraint area may be used for a land use by remedying its 

potential effect. For example, flooding may be a constraint for a residential area. 

Nevertheless, a flood-prone area may still be used for residential purpose, if some 

protective measures and an insurance policy (for loss of property from flood hazard) are 

considered. However, in terms of cost, areas under constraint may be more expensive to 

use than areas without constraint. This logic may be applied to create a cost suitability 

model by incorporating the constraint model as given by Equation 5.6. A constraint 

model should be prepared by assigning higher values (greater than 1) to the constraint 

area and 1 to the non-constraint areas. 

In this problem, flooding was considered as a constraint to development land use. A 

flood constraint model was developed and 5 was assigned to flood-prone areas and 1 to 

non flood-prone areas. When this flood constraint model was applied in Equation 5.6, 

the areas prone to flood hazards became five times costlier than the non-flood prone 

areas in the cost models, rendering these areas relatively more unsuitable for 

development purposes. The resultant cost values for development land use ranged 
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between 0.223 and 3.785 in the ordinal model, 0.00417 and 0.10417 in the continuous 

model and 0.01129 and 0.62576 in the fuzzy model. 

Finally, the reciprocal of the suitability model with or without a constraint model was 

converted into integer values by multiplying the ordinal cost model by a factor of 1000, 

and the continuous and fuzzy cost models were multiplied by a factor of 10,000 as 

shown in Equation 5.6. The cost model for each land use type provides a discrete cost 

value for each land unit and offers a numeric comparison of the relative suitability 

between the land use types to a land unit. The land use with the lowest cost value is the 

most suitable land use for the land unit. The small grid (10 by 10 cells) and the medium 

grid (100 by 100 cells) were cut out from large cost models (525 by 525) to assess the 

performance of simulated annealing for solving different grid size MOLAA problems. 

The range of cost values, their means and number of discrete values for small, medium 

and large grid sizes of the ordinal, continuous and fuzzy cost models are given in Tables 

5.7, 5.8, and 5.9, respectively. The ordinal, continuous and fuzzy cost suitability models 

are displayed in Figures 5.2, 5.3 and 5.4, respectively. The more costly land units are 

represented by the darker shading. 

Table 5.7 Cost suitability values for small grid (10 by 10 cells) for all three cost 
models 

Land use 
Ordinal model Continuous model Fuzzy model 

Type min 
No of 

Min 
No of 

min 
No of 

max 
values 

max 
values 

max 
values 

Conservation 294 694 14 588 1428 35 1583 4686 100 
Agriculture 322 606 6 666 854 28 1899 4667 55 
Forestry 215 388 9 442 763 38 1073 2989 91 

436 3285 8 618 3268 28 2863 14330 92 

Table 5.8 Cost suitability values for medium grid (100 by 100 cells) for all three 
cost models 

-~-· --··~ ---~~---~-=,._.,=-=»»>~-"-~--·--

Land use 
Ordinal model Continuous model Fuzzy model 

~-·-~·--- --~--·----~~-,~·~~·-~---~-~-~~, 

Type No of 
Min 

No of No of 
mm max 

values 
max 

values 
mm max 

values 
Conservation 271 1000 37 546 1724 104 1469 8294 4169 
Agriculture 281 833 13 552 1020 83 1834 9233 529 
Forestry 200 506 38 425 900 100 1000 4354 1310 

308 3785 109 486 4311 177 2203 40405 5243 
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Table 5.9 Cost suitability values for large grid (525 by 525 cells) for all three 
cost models 

Land use Ordinal model Continuous model Fuzzy model 

type No of 
Min 

No of No of 
mm max 

values 
max 

values 
mm max 

values 
Conservation 223 1000 78 462 1960 166 1170 8472 7237 
Agriculture 200 1000 36 392 1428 185 1000 15270 5761 
Forestry 200 757 110 414 1515 174 1000 7550 4890 
Development 223 3785 350 417 10417 363 1129 62576 17468 
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Figure 5.2 Ordinal cost suitability models for different land uses 
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Figure 5.4 Fuzzy cost suitability models for different land uses 

5.5 Applying MOLA Module and Combinatory methods to the 
hypothetical MOLAA problem 

5.5. 1 MOLA module in /DR/Sf 

Implementing a MOLA module in IDRIS:r® follows the same procedure as explained in 

section 3.3 in Chapter 3. Four land uses, their rank maps and area requirements were 

specified in the input window of the MOLA module. Equal weights were assigned for 

all the rank maps and no secondary image was used for prioritising the rank maps. The 

MOLA module produced the final land use allocation by allocating the same number of 
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cells to each land use as specified in the input window. The solutions and the 

performance of this method will be discussed in Chapter 6. 

5.5.2 Applying Combinatorial methods 

5.5.2.1 Initial input solution for Combinatorial methods 

Combinatorial methods generate a near-optimal solution from an initial solution by 

iterating several times unless the algorithm is terminated by the prescribed stopping 

rules. The initial solution provides a platform for combinatorial methods to reach the 

ultimate solution. The procedure for generating the initial solution may vary from 

problem to problem and may also influence the efficiency of the combinatorial methods. 

Aerts (2002) used a random input model as an initial solution for the land use allocation 

problem. In addition to this, I have used two other input models as initial solutions for 

implementing combinatorial methods and compared the results. The initial input 

generation techniques are described in the following section. 

1. Random input model 

The random input model was produced by executing a program 'rangrid.exe' written in 

the C++ programming language by Leahy (2003a). This program uses a control file in 

. txt file format which specifies the number of cost models, area requirement in number 

of cells for each land use type and the name of the output file. The land use types 

indicated in the control file are merged using the cost models satisfying the area 

requirement for each land use. In order to merge all the land use types, this program 

randomly selected the prescribed number of cells for each land use from the respective 

cost model. The area requirements for the land uses were met sequentially, in the order 

stated in the control file. In this example, first the 93,059 cells were randomly selected 

from conservation cost model and allocated to conservation land use. Second, when the 

area requirement for conservation land use was satisfied, 46,530 cells were randomly 

chosen out of unassigned cells from the agricultural cost model for agricultural land use. 

Third, 27,918 cells were randomly selected from the remaining cells for forestry land 

use by using the forestry cost model. After satisfying the area requirements of three out 

of four land uses, the number of unassigned cells would be the same as the area 

requirement for the fourth land use. Here, the cells remaining after random allocation to 

conservation, agriculture and forestry land uses were assigned to development land use. 

These all cells had the same random chance to be allocated to one of the land uses. 
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This program finally produced a land use allocation model and a corresponding cost 

model in binary raster format with .flt file extension. These two models were imported 

in the Arc View® 3.2 GIS software and displayed in grid format. 

2. Cheapest input model 

The cheapest input model is the cheapest combination of all land uses based on the 

values in the cost model which also satisfies the desired area allocation for each land 

uses. It uses a two-pass process to generate the output grid. In the first pass, a linked list 

of records is created for each cell, containing the cell location and a value calculated 

from the input grids. The cost values for each land use are compared for each cell in the 

cost models and recorded in ascending order from the lowest to the highest cost value. 

In the second pass, land use with the cheapest cost value is assigned to each cell. If the 

area requirement of the land use with the cheapest cost has been met, the cell is assigned 

to the land use with second cheapest cost and so on. Finally the cheapest input model is 

generated by assigning the best possible land use with the cheapest cost to each land 

unit, satisfying the area requirement for each land use type. The cheapest input models 

for all the grid sizes of continuous cost model are shown in Figure 5.5. 

N 

+ 
Legend 
- Conservation 
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D Forest 
D Building 
LJNoData 

0 2000 4000 Metres 
i---

Figure 5.5 Cheapest initial input solution for the large grid of 
continuous cost model 
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3. Greatest difference input model 

This model follows the same process as the cheapest input model. However, the linked 

list records the cell location with the difference value between the maximum and 

minimum cost values for that cell in the cost models. These values are recorded in 

descending order. In the second pass, land use with the greatest difference is assigned to 

a cell through assessing the linked list. ff the area requirement of land use with the 

greatest difference has been met, the cell is assigned to the land use with the second 

greatest difference and so on. Finally the greatest difference input model is generated by 

assigning the best possible land use with the greatest difference to each land unit 

satisfying the area requirement for each land use type. It involves cost optimisation 

depending on the difference in the cost values for different land uses. ff the cost 

difference is high in the input grids, this method produces a lower total cost than the 

cheapest cost method. The greatest difference input models for all the grid sizes of 

fuzzy cost model are shown in Figure 5.6. 

+ 
Legend 
.. Conservation 
c=J Agriculture 
c=J furestry 
[:=:J Development 
c=J NoData 

3000 0 3000 6000 Metres r---
Figure 5.6 Greatest difference initial input solution for the large grid of 

fuzzy (cost suitability) model 

A program 'mergrid.exe' was written in C++ programming language by Leahy (2003b) 

for generating the cheapest input model and the greatest difference input model by 

selecting Mode 1 and Mode 2, respectively. To execute the program in both modes 

requires a control file specifying the number of input land use types, their area 

requirement and the name of the output file as given in Figure 5.6. 

The total cost functions and mean cost values for three grid sizes are given for three 

different input models for ordinal, continuous and fuzzy cost models in Tables 5.10, 

5.11 and 5.12 respectively. The run times for the large grid of the ordinal cost model 
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were about 11, 16 and 18 minutes for merging four-land use cost models by random, 

cheapest and greatest difference method, respectively. 

Table 5.10 Total and mean cost functions for different input solution and grid 
sizes for ordinal model 

Grid Size Random Greatest Difference 
Total cost Mean cost Total cost Mean cost Total cost Mean cost 

Small 47013 470.13 46654 466.54 45295 452.95 
Medium 5291396 550.10 4986708 63.96 4561951 474.26 

93526457 502.51 84709562 455.13 76666864 411.93 

Table 5.11 Total and mean cost functions for different input solution and grid 
sizes for continuous model 

Grid Size Random Greatest Difference 
Total cost Mean cost Total cost Mean cost Total cost Mean cost 

Small 89772 897.72 80969 809.69 80110 801.1 
Medium 8967354 932.25 8610910 895.2 8174289 849.81 

166067628 892.27 164854381 885.75 160186567 860.67 

Table 5.12 Total and mean cost functions for different input solution and grid 
sizes for fuzzy model 

Grid Size Random 
Total cost Mean cost Total cost Mean cost 

Greatest Difference 
Total cost Mean cost 

Small 309464 3094.64 314039 3140.39 263079 2630.79 
Medium 40845342 4246.3 39855782 4143.4 36544927 37799.24 

710188157 3815.79 646727541 3474.8 586403903 3150.71 

5.5.2.2 Applying Simulated Annealing 

1. Determining the parameters for Simulated Annealing 

For the MOLAA problem, Simulated Annealing aims to find a near optimum solution 

through minimization of the cost function. The search space and the cost function are 

the basic parameters to start the exploration of the optimum configuration of the land 

uses. However, the outcome of the algorithm is governed by cooling parameters like 

initial control parameter, rate of cooling, final values of control parameter, and the 

number of iterations per temperature step. Each of these parameters is discussed below 

in the context of the MOLAA problem. 
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I. Search space 

The entire search space includes all the land units that need to be assigned to an 

optimum land use, and the number of land use alternatives. The land units with 

mandatory land use such as roads, streams or sea were excluded from the search space 

and treated as NODAT A cells. In the search space, each land unit was defined by a 

double array cell Xy. Because of the exclusion of the road and stream network and the 

ocean, the valid numbers of cells to be assigned with a land use were 100, 9619 and 

186118 in the small, medium and the large grids, respectively. 

II. Cost function (CF) 

The value of the cost function is the major criterion for assessing the performance of the 

algorithm. The initial cost function ( F;) was estimated by summing up the cost of all 

the valid pixels (Equation 3 .10) with respect to their land use in the initial solution, as 

given by Aerts (2002). 

The initial cost functions for different initial solutions for three grid sizes with three cost 

models are given in Tables 5.10, 5.11 and 5.12. This research applies the land use 

suitability model derived by using ordinal, continuous and fuzzy-WLC methods and 

subsequently transferring to cost models to apply combinatory methods. The cost was 

derived using several criteria relevant to each land use and combined by using relative 

weights. The procedures were discussed in Section 5.2. 

III. Neighbourhood solution generation 

The interchange or swap method was used for generating a new solution at each 

iteration. In order to accomplish a swap, two cells were randomly selected and land uses 

were exchanged between them. Where one or both of them were NODATA cells, land 

uses were not exchanged and a fresh random selection was carried out. Subsequently, a 

new cost function was calculated by using the cost grid for the new combination of land 

uses. Every exchange of land uses between two selected cells was counted as a swap or 

iteration. This process was repeated to generate a new neighbourhood solution until the 

defined number of swaps was achieved. In order to distinguish each swap based on its 

impact on the cost function, the swaps were counted as cold-swap or hot-swap 

depending upon whether the swapping resulted in minimization ( F; > F1 ) or 
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maximization (F; < Fi) of the cost function, respectively. If there was no change in the 

cost function ( F; = Fi), the swapping of land use did not take place and was counted 

as no swap. 

IV. Initial control parameter (T1) 

Aerts (2002) used an initial control parameter that accepted about 80 percent of the total 

increasing cost function for a land allocation problem, as suggested by van Laarhoven 

(1987). To find an appropriate control parameter for a MOLAA problem, an attempt 

was made to judge the effect of the initial control parameter on the optimisation by 

running the algorithm at low (L), medium (M) and high (H) values of the control 

parameter, as determined by the hot-swap acceptance of about 50, 80 and 98 percent, 

respectively. 

V. Cooling function 

The control parameter should be cooled down after attempting the prescribed number of 

swaps (S) at each control parameter step (N). In order to find an appropriate cooling 

function for the MOLAA problem, the following three cooling functions as given by 

Equations 3.6, 3.8 and 3.9 were tested for running Simulated Annealing and were 

denoted Mode 1, Mode 2 and Mode 3, respectively. 

In Mode 1, the initial control parameter was cooled at four different cooling rates by 

using the value of R as 0.2, 0.5, 0.8 and 0.98 and were denoted as very fast (VF), fast 

(F), slow (S) and very slow (VS) cooling rates respectively. However, other two cooling 

functions (Equations 3.8 and 3.9) also required final control parameter ( Tn) and the 

number of control parameter steps ( N ), besides the initial control parameter ( T1 ). These 

values were obtained by running the algorithm in Mode 1. 

VI. Number of swaps per step (Sp) 

The exchange of land uses between two randomly selected cells yields a new 

neighbourhood solution, thereby bringing about a small change in the land use pattern 

and the cost function. The number of iterations per step was assigned based on the 

multiple of neighbourhood size. The appropriate number of swaps for a MOLAA 

problem with different grid sizes was found by testing a range of valid neighbourhood 

sizes in the grid. The swapping rate as low as the number of valid cells in the grid and 
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as high as 500 times the number of valid cells in the grid was tested to identify an 

appropriate number of swaps per step for a MO LAA problem. 

Aerts (2002) used 100 and 1000 swaps per step for a grid of 10 by 10 cells and obtained 

the same cost function for both swapping rates. However, he did not mention the 

number of swaps used in the case study with an area of grid size 300 by 300 cells. 

Sundermann (1996) suggested using the number of iterations per step at which the cost 

function culminates. This requires several trials with different numbers of iterations. 

Another method for determining the number of iterations per step is based on the 

multiple of neighbourhood size (Pirlot 1996). Pirlot's method is found to be straight 

forward method for finding the number of iteration per stem and hence, applied in this 

research. The neighbourhood size for this problem was taken to be the number of total 

cells excluding the nodata cells in the grid. The appropriate number of swaps for a 

MOLAA problem with different grid sizes was found by testing a range of valid 

neighbourhood sizes in the grid. 

VII. Stopping rule 

The main aim of the algorithm is to generate a near-optimum solution by minimizing 

the cost function. As soon as this solution is reached, the algorithm has to be stopped. 

As long as there is a possibility of cold-swap ( F; > F1 ), there is a chance of improving 

the cost function. At the stage when there is no more cold-swapping, the system ceases 

to produce any further improvement in the cost function and therefore yields the lowest 

cost function value for the run. This criterion was used as the stopping rule by assigning 

a condition at which the cold-swap became zero throughout the control parameter step, 

and the algorithm was terminated. This rule was specifically applicable to the cooling 

function (Equation 3.6) where the final control parameter was set to zero and the 

algorithm can proceed indefinitely by reducing the initial control parameter at the rate 

of the R factor to zero. However, for other cooling functions in Mode 2 and Mode 3, the 

number of steps (N) and the final control parameter (TN) were specified beforehand and 

these parameters served to terminate the algorithm when either one of the conditions 

was met. 
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2. Applying spatial compactness function in Simulated Annealing 

After finding an appropriate annealing schedule for Simulated Annealing, four values of 

compactness factor, that is, 25, 50, 100 and 200, were applied in solving the same 

MOLAA problem. The cost function after incorporating the compactness function was 

calculated using Equation 3.12. The impact on spatial compactness and cost function 

was evaluated. In some runs, intermediate outputs were obtained to assess the 

progression of land use allocation by the algorithm. The spatial compactness was 

measured in terms of the number of patches at the land use level and landscape level 

using FRAGSTAT software. The lower number of patches indicated higher 

compactness and the higher number of patches implied relatively less compact. The 

performance of simulated annealing for all these cost models is discussed in Chapter 7. 

3. Running Simulated Annealing 

A program 'siman2dexe' (Leahy, 2004) was written in C++ based on the procedure 

illustrated in Figure 3.4. The program can run the algorithm in Mode 1, Mode 2 and 

Mode 3 with cooling functions as given by Equations 3.6, 3.8 and 3.9 in Chapter 3, 

respectively. The command line for running the algorithm in Mode 1 is as follows. 

C:\siman2d <control file> <Run Mode> <Initial Control Parameter> 

<Cooling Rate> <Final Control Parameter> <Number of Swaps> 

<Compactness Function> <Dump Every> 

Where simand2d implies 'siman2dexe', and control file specifies the input grids and 

their area requirement. Run Mode specifies the cooling function in Mode 1. Initial 

control parameter, cooling rate, final control parameter are the elements of the annealing 

schedule for the algorithm. Number of Swaps is any integer number assigned for 

swapping cells per control parameter step. Compactness function rewards the same land 

use by specified value; and Dump Every specifies production of land use and cost 

outputs at specified interval of iterations. The program produces two output maps for a 

final solution, that is, the land use and cost suitability maps. If the 'Dump Every' is 

specified at more than zero (an integer value), the output maps are also produced at 

every interval. The output result may also be saved as a text file which summarises each 

iteration step with the numbers of cold-swaps, hot-swaps and non-zero swaps and the 

cost function (see Annex 1). 
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If the program was run in Mode 2 and Mode 3, it did not require <Cooling Rate> but the 

number of iterations needed to be specified. For these modes, the run command bec.ame 

as follows. 

C:\siman2d <control file> <Run Mode> <Initial Control Parameter> 

<Number of iterations> <Final Control Parameter> <Number of 

Swaps> <Compactness Function> <Dump Every> 

In order to find an appropriate annealing schedule and cost models for solving a 

MOLAA problem by simulated annealing, three initial control parameters, three cooling 

functions, four cooling rates for the cooling function in Mode 1 and four swapping rates 

were tested. To select the appropriate cooling function, three cooling functions as given 

by Mode 1, 2 and 3 were applied by using the equivalent annealing schedules. The 

small grid size (10 by 10 cells) was found to be too small to compare the cost 

minimization by different annealing schedules. Hence, the medium (100 by 100 cells) 

and large (525 by 525 cells) grid sizes of the ordinal cost model were chosen for 

comparing the results by different annealing schedules in order to find appropriate 

parameters for Simulated Annealing. 

In the command line discussed above, Simulated Annealing also requires values for 

'Compactness Function' and 'Dump Every'. These parameters were not applied and 

'zero' value was used instead during searching for the appropriate annealing schedule 

for simulated annealing. 

5.5.2.3 Applying Tabu Search algorithms 

1. Determining the parameters for Tabu Search 

The descriptions of the search space, objective function and neighbourhood generation 

mechanism were the same for Tahu Search as for Simulated Annealing described in the 

previous section of this chapter. The following section describes other parameters 

specific to Tahu Search in the context of its application to a MO LAA problem. 

I. Tahu length 

The location of two swapping cells was recorded in the Tahu list in order to restrict 

cycling of the move for specified Tahu length. The minimum Tahu length could be set 

to 10 and the maximum Tahu length could be as high as 25 percent of a grid size in the 

program written for this algorithm. For assessing the impact of Tahu length on 
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improving the cost function, different values of Tabu length were tested to find the best 

Tabu length for different grid size MOLAA problems. The influence of different Tabu 

length on the cost function is discussed in Chapter 8. 

II. Neighbourhood solution generation 

As in Simulated Annealing, the interchange or swap method was used for generating a 

new solution at each iteration. However, Tabu Search uses the following three 

neighbourhood structures: 

Single neighbourhoods: After selecting the initial land unit (current cell), a subsequent 

selection of another land unit was made randomly and the costs of these two land units 

were compared for swapping. The swapping of land use took place, to ascertain whether 

the cost of the later land unit was cheaper than the former land unit or not. This process 

was repeated for a specified number of swaps per iteration. The random selection of 

land unit could select any one-land unit in the grid. 

Four neighbourhoods: In four neighbourhoods, four land units were randomly selected 

in each iteration in order to find an appropriate cell for swapping with the initial land 

unit (current cell). The costs of the four cells chosen were compared and the land use of 

the cell with the lowest cost was swapped with the current cell. The same swapping rule 

was used as discussed above. This process was repeated for a specified number of 

swaps per iteration. 

Eight neighbourhoods: In eight neighbourhoods, eight cells were randomly selected 

and their costs were compared for swapping with the current cell. The cell with the 

lowest cost was chosen and the land use was swapped with the current cell. 

The number of neighbourhoods to be applied in the algorithm must be specified in the 

command line. As in Simulated Annealing, the same meaning of cold-swap and hot­

swap applies in the Tabu Search algorithm. However, Tabu Search accepts every hot­

swap, if the condition allows the swapping of the land use between the current cell with 

the cell with the lowest cost in the neighbourhood cells. In order to decrease the number 

of hot-swaps in the consecutive steps, the number of hot-swap acceptances was 

restricted to the ratio of the number of swaps per iteration divided by iteration step as 

given by Equation 5.7. For instance, in a run with 9619 swaps per step, the number of 

106 



potential hot-swap acceptances for the 20th steps. In the first step, the potential hot-swap 

is equal to the number of swaps, that is, 9619. In the subsequent steps, the potential hot­

swaps become 4809, 3206, 2405 in second, third and fourth step, respectively and so on. 

In this example, to reduce the potential hot-swaps to 1, the algorithm requires 9619 

steps. If the higher number of swaps per step is applied to run the algorithm, the number 

of steps grows by the same number to reduce the potential hot-swap to 1. Therefore, to 

restrict such a huge number of steps, the minimum number of potential hot-swaps was 

set to five percent of the number of the swaps per step. For a run with 9619 swaps per 

step, the minimum number of potential hot-swap will be 480 and the algorithm reaches 

in the 19th steps. At the 20th steps, the potential hot-swap becomes zero and only cold­

swaps are accepted. 

Potential Hot-swaps = intf . ~ l Swappmg Rate 
No.of Steps 

Equation 5. 7 

III. Number of swaps per iteration 

Two different options for number of swaps per iteration were used. The specification of 

Mode number, either 1 or 2 in the run command, determined whether the static or 

dynamic option was to be used. Mode 1 employed the static option and a specified 

number of swaps per iteration took place. When Mode 2 was used, the dynamic option 

was applied. In this case, the number of swaps per iteration was determined randomly 

between the specified number of swaps and twice its value for each iteration. Four 

swapping rates as found by the 1, 10, 50 and 100 times the valid cells in the grid were 

applied in both modes. 

IV. Stopping rule 

In Tabu Search, the number of iterations was not specified so this process could 

continue indefinitely. The algorithm should not be terminated as long as there is some 

improvement in the cost function. Hence, a stopping rule was incorporated in the 

algorithm to terminate when there was no further improvement in the cost function 

throughout an iteration. 
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2. Applying compactness function in Tabu Search 

The same four values of compactness factors, that is, 25, 50, 100 and 200 as m 

Simulated Annealing were applied in Tahu Search at the appropriate setting of 

parameters. Equation 3.12 estimated the cost function after every swapping of land uses. 

The influence of this algorithm using compactness function was compared with 

Simulated Annealing in terms of the spatial compactness and cost function. The results 

are discussed in Chapters 8 and 9. 

3. Running Tabu Search 

A program 'taboo.exe' (Leahy, 2005) was written in C++ for the Tahu Search algorithm 

based on the procedure illustrated in Figure 3.5. The command line for executing the 

program in C prompt in MS dos is given below. 

C:\taboo <control file> <Run Mode> <Tabu length> <Neighbour 

size> <Number of Swaps> <Compactness> <Dump Every> 

Where taboo implies 'taboo.exe', control file specifies the input grids and their area 

requirement, Run Mode 1 or 2 determines whether to use a static or dynamic option for 

the number of swaps per iteration, Neighbour size 1, 4 or 8 implies all neighbours, four 

neighbours or eight neighbours, respectively; Number of Swaps is any integer number 

assigned for swapping cells per iteration; Compactness rewards the same land use by 

specified value; and Dump Every specifies the production of land use and cost output at 

specified intervals of iteration. The program produces two output maps for the final and 

intermediate outputs similar to the Simulated Annealing. The output result from the 

program may also be saved as a text file which summarises each iteration step with the 

number of potential hot-swaps, cold-swaps and hot-swaps and the cost function (see 

Annex2). 

Tahu Search was implemented for three different grid sizes with three cost models. 

Different combinations of parameters were used to identify the appropriate value for 

each parameter. The optimum solutions generated by Tahu Search were compared with 

the solution by Simulated Annealing and GIS-based MOLA in IDRIS!®. 
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5.6 Summary 

A hypothetical MOLAA problem was designed in the Kioloa region of NSW for 

comparing the performance of these three methods. Four land uses were identified in 

order to accomplish six land use objectives. Altogether 17 criteria were used to derive 

land use suitability for these land use types. The criteria maps were used in the ordinal, 

continuous and fuzzy scales and combined by using the Weighted Linear Combination 

method. For the combinatory methods, these land use suitability models were 

transferred into cost models. The cost models were used to create initial input solution 

for applying the combinatory methods, using the random, cheapest and greatest 

difference methods. 

The MOLA module was applied to the ordinal and continuous land use suitability 

models. The combinatory methods were applied to all three models including fuzzy cost 

model and three initial input solutions. The results are presented in Chapters 6, 7 and 8 

for the MOLA module, Simulated Annealing and Tabu Search, respectively. 
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Chapter 6 

RESULT AND DISCUSSION I - APPL YING MOLA IN 
SOLVING A HYPOTHETICAL MOLAA PROBLEM 

This chapter reports the results of multi-objective land use allocation applying the 

MOLA module in IDRISI® software to a hypothetical MOLAA problem. Land use 

suitability models derived by the ordinal-WLC and continuous-WLC were used in the 

module (described in Chapter 5). In order to assess the land use conflicts among 

multiple land uses, this chapter first presents the ideal land use allocation for a single 

land use obtained from the MCE (Multi Criteria Evaluation) module in the same 

software. Then it follows the results of land use allocation for a hypothetical MOLAA 

problem in three grid sizes. A detailed analysis of the results was carried out for the 

small grid problem. This is followed by a discussion of the results and the technique 

itself. 

6.1 Results 

6.1.1 Solving a hypothetical MOLAA problem using MOLA 

6.1.1.1 Land use allocation for the ordinal land use suitability model 

Figure 6.1 displays the allocation of four land use types in the Kioloa region by MOLA 

using the ordinal land use suitability model. The module was run twice with zero 

tolerance. On both occasions, the final land use allocations were delivered in less than a 

minute of run time after 38 passes. In contrast to spatial allocation of these land uses, 

both these runs confirmed exactly the same land use allocation for each land unit. A 

summary of the results produced at the end of each MOLA operation is given in Annex 

3 which provides the cut, goal and number of cells achieved in each pass. The cut values 

in the final pass provide the highest rank cell allocated to each land use type to achieve 

the area requirements. The allocation of 18,611 units to development land use was met 

from a maximum rank value of 33,663. The requirement of 27,918 cells for forestry 

land use was fulfilled from the lowest suitability ranking of 36,247. Agricultural land 

use was allocated to 46,530 out of 81,001 ranking cells. In the case of conservation land 
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use, the allocation of 93059 land units was achieved by assigning the land unit with the 

lowest suitability ranking, that is, rank value of 186118. The spatial compactness in 

terms of number of patches as defined by the four-neighbourhood and eight­

neighbourhood rules was found to be 8,665 and 4,862, respectively. The lower number 

of patches indicates a higher level of spatial compactness (discussed in Chapter 5). 

Table 6.1 presents the maximum rank values for meeting the area requirements and 

spatial compactness values for each land use type. 

N 

+ 
Legend 
- Conservation 
D Agriculture 
D Forest 
D Building 
D No Data 

2000 0 2000 4000 Metres 

--~--

Figure 6.1 Land use allocation for the Kioloa region by MOLA using 
ordinal land use suitability model 

Table 6.1 Rank values and spatial compactness for ordinal land use suitability 
model 

SN Land use 
No of cells Maximum Spatial compactness 

required rank values 4-neighbours 8-neighbours 
1 Conservation 93,059 186,118 1,800 775 
2 Agriculture 46,530 81,001 3,983 2,331 
3 Forestry 27,918 36,247 2,109 1,314 
4 Development 18,611 33,663 773 442 
5 Total 186,110 8,665 4,862 

A detailed analysis of a small grid of 10 X 10 cells with the same land use types and 

area requirements as in the Kioloa region revealed that the module assigns each land 

unit x with the most suitable land use k, by comparing the rank values for all the land 

use types. Figures 6.2 and 6.3 display the cell values in the suitability and rank maps for 

four land use types in the small grid. The first and second cells in the last column in the 

suitability map (Figure 6.2) were deemed unsuitable for development use due to the 
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susceptibility of the areas to flood hazard. In the rank maps (Figure 6.3), these cells 

were assigned the lowest rank values, that is, 99 and 100 for development use. 

The final land use allocation by the MOLA in two independent runs is shown in Figure 

6.4 for the 10 by 10 grid. The rank value of the cells allocated to each land use in the 

final land use allocation is given in Table 6.2. In this small grid, the area requirement of 

10, 15 and 25 cells for development, forestry and agriculture land uses were met by 

allocating the maximum rank values of 14, 19 and 62 respectively. The highest rank 

value to select 50 cells for conservation land use was 96. The numbers of patches for the 

four-neighbour rules were found to be 4, 7, 8 and 7 for conservation, agriculture, 

forestry and development land uses respectively (Table 6.2). 

Table 6.2 Distribution of rank values allocated to four land uses in a small grid by 
MOLA using ordinal land use suitability model 

_,,..-M»>W,,.,..-*"h""'~-~. 

Land use 
Maximum Spatial 

SN No of cells Rank value distribution 
re uired 

rank values compactness 

Conservation 
1, 3-7, 9-12, 14, 16, 18, 20, 23, 26-29, 

1 
50 

96 31-33, 36, 43, 50-54, 56-59, 68, 70, 71, 4 
73, 76,78-81,83,85, 87, 88,90-92,96 

2 
Agriculture 

62 
1-5, 8, 10-14, 16, 21, 24, 33, 40-42, 44, 

7 
25 45,49,54,55,60,62 

3 
Forestry 

19 1, 3-6, 8-14, 17-19 8 
15 

4 
Development 

14 1-3, 5, 9-14 7 10 
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Figure 6.2 Land use suitability maps with values for four land uses in the small grid. 
Black squares indicate NODATA values 

22 E ~ D n 48 ~ ~ ~ ~ JO 1 2 M 75 89 ro I() 70 9 M 48 49 61 60 82 2 I N IQ( 

19 16 II 14 31 E ~ 46 ~ 34 18 n 61 56 42 32 86 94 37 5 ~ W ~ TI M ~ ~ 3 ~ 99 

M 8 ~ n 12 20 50 84 ~ 51 11 58 n 41 25 51 'if/ 63 34 65 ~ ~ ~ n 54 @ 81 94 77 92 

n 13 n 15 ~ n 82 ~ % ~ 14 15 28 50 M 60 38 52 85 33 @ ~ ~ 51 73 @ 84 93 % ITT 

M 2 I 18 10 24 5 ~ ~ 97 99 81 92 6 31 43 'l:T 62 26 91 88 56 ~ ~ ~ ~ 46 ~ 86 96 

~ G ~ ~ 21 6 36 88 71 99 95 98 84 93 3 46 4 53 68 88 89 91 N 00 50 ~ 4 E TI 97 

40 60 73 @ ro 9 7 ~ 80 IOC 96 21 29 74 fl} 8 7 79 40 83 31 ~ n 80 n 8 5 40 ~ Tu 

Tu ~ 94 ~ n 61 @ ~ m ~ 82 20 19 35 54 59 67 78 39 73 M 22 30 n IO 11 34 9 ~ 13 

41 89 ITT ~ n 81 N % 91 54 97 13 J7 36 48 77 71 49 55 ~ 26 W G n ~ ~ 17 15 19 D 

3 4 n % ® M ~ ~ M ~ 80 16 22 12 45 57 24 30 47 76 6 7 36 16 21 24 18 12 29 n 

Consetvation Agricultw.·e Forestry Development 

Figure 6.3 Rank maps with values for four land uses in the small grid 
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Figure 6.4 Land use allocation for the small grid of ordinal land use 
suitability model 

6.1.1.2 Land use allocation for continuous land use suitability model 

For the continuous land use suitability model, land use allocation with the same input 

variables as in the ordinal model took one minute 35 seconds to achieve the desired 

number of cells for each land use type, accomplished in 879 passes by the MOLA 

module (Figure 6.5). The cut values in the final pass were found to be 179,123, 86,037, 

42,282 and 26,606, respectively for conservation, agriculture, forestry and development 

land uses. The spatial compactness was enhanced by about 25 percent in the continuous 

model. Table 6.3 presents maximum rank values for meeting the respective area 

requirement and spatial compactness values for each land use type in land use allocation 

for continuous model by MOLA. 

Legend 
- Conservation 
D Agriculture 
D Forestry 
D Development 
LJNoData 

N 

+ 

3000 0 3000 6000 Meters - -- -

Figure 6.5 Land use allocation by MOLA for the continuous land use model 
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4 
5 

Table 6.3 Rank values and spatial compactness for continuous land use 
suitability model 

Land use 
No of cells Maximum ,_,, __ ,~_,~Sp~!!,~~on_:p_~ct~ess ~---

required rank values 4-neighbours 8-neighbours 
Conservation 93,059 179,123 1,479 691 
Agriculture 46,530 86,037 1,990 1,069 
Forestry 27,918 42,282 2,341 1,438 
Development 18,611 26,606 773 450 
Total 1 110 

In the small grid of 10 X 10 cells, MOLA accomplished the allocation of four land uses 

in a few seconds with the same input parameters as in ordinal model. It took 19 passes 

to_ achieve the desired number of cells for each land use compared with 11 passes for the 

ordinal model. However, the lowest suitability value was improved for all these land 

uses for the continuous model (Table 6.4). Development land use was found to be the 

ideal land use allocation, receiving 10 cells out of 10 rank level. The total number of 

patches remained the same as in the ordinal model. However, there was an increase in 

the number of patches for the conservation land use, which was compensated by a 

decrease in the number of patches for the other three land uses (Table 6.4). 

Table 6.4 Distribution of rank values for four land use types in a small grid for 
continuous land use suitability model 

SN Land use Maximum R k l d. t .b t. Spatial . an va ue 1s n u ion 
~-~N_s>_l)f ~lls re_9,_l!,!!~~~i:,_ank,_yalues --------~-~--,-~,-_, _______ , ____ COI]lPaCt~~~,S~--

l Conservation 84 1, 3-7, 9-15, 17, 19, 38-40, 42, 7 
50 53-80, 82,84 

2 
Agriculture 

51 1-20,23,24,27,40, 51 6 
25 

3 
Forestry 

18 1, 4-11, 13-18 7 
15 

4 
Development 

10 1-10 6 
10 

6.2 Discussion 

MOLA module was found to be biased towards the land uses with lower area 

requirements than land use with the highest area requirement. It means that the MOLA 

allocates the most suitable land units to the land uses with less area requirements. The 

analysis of cell values in the output showed that each cell was assigned with the land 

use with the lowest rank value, signifying the best suitable land use. This was 

accomplished by comparing the rank values among the land uses and the land use with 

the lowest rank value (higher suitability) was assigned to the land unit. In carrying out 

this operation, the land use types with the smaller area requirements were allocated with 
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highly suitable land units, whereas the land use with highest area requirement was 

allocated all the remaining land units, regardless of their suitability. In this hypothetical 

problem, the land uses with smaller area requirements (development, forestry and 

agriculture) were met by comparatively highly suitable land units than the land use with 

the largest area (conservation). Conservation land use was allocated with less suitable 

land units, those not claimed by other land uses. 

The module's preference to allocate highly suitable land units to the land use types with 

the smaller area requirement is controlled by the rank maps. The RANK operation 

transformed the suitability maps into the rank maps by ordering the suitability values 

based on the range, magnitude and number of discrete values in the suitability map of a 

particular land use. Though the rank map provides the suitability ranking of each land 

unit for a land use, the values in the rank maps for different land uses do not imply a 

relatively suitability ranking. This is because a land unit with the same suitability value 

for two different land uses is most likely to get different rank values by the ranking 

operation when the suitability maps have a different range and distribution of suitability 

values for these land uses. Even if a cell is less suitable in terms of relative suitability 

value in the suitability map for a land use, it may get a higher ranking order than a land 

use which has higher suitability value for that cell. 

The transformation of the suitability value to rank value by the RANK operation is 

illustrated in Figures 6.2 and 6.3. In the suitability maps (Figure 6.2), the lower right 

cell in the 10 by 10 grid has a suitability value of 82, 130, 172 and 80 for conservation, 

agriculture, forestry and development land use, respectively. The forestry land use with 

the highest relative suitability value (172) among all the land uses was the most suitable 

land use for the cell. Agriculture land use was the second appropriate land use for the 

cell, followed by conservation land use. The development land use was the lowest 

suitability for that cell. However, the RANK operation resulted in rank values of 87, 93, 

76 and 32 for these land uses, respectively (see Figure 6.3). Though the cell had the 

least suitable value for development land use, it was assigned the best rank value among 

the four land uses. The RANK operation distorted the relative suitability of the different 

use for a land unit by assigning a rank value, in order of suitability value, for a single 

land use. 
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The MOLA does not account for overall suitability and it allocates the same land use to 

each land unit in different runs using the same rank maps, area requirement and 

preferences of land uses. However, the module generates different land use allocation 

and spatial compactness for the land use suitability maps produced by using ordinal and 

continuous models. These differences in the land use allocation and spatial compactness 

can be attributed to the difference in the rank maps generated from the suitability 

models of these land uses with differences in the value, range, magnitude and spatial 

distribution. With the finer representation of the land use suitability in the continuous 

model than in the ordinal model, the MOLA module produced a more spatially compact 

land use allocation in the former model than in the latter. 

One major advantage of the MOLA module is that it can allocate a specified number of 

cells to each land use based on the ranking maps. Similar to this module, UPOS, a grid 

function in Arclnfo®, can also combine several grids with suitability values and gives an 

output assigning the cell with the highest value among the grids. Preference for any land 

use can also be specified in the function, but this does not allow area requirement 

specification. A similar kind of operation could also be accomplished by writing an Arc 

Macro Language (AML) in Arclnfo® (Lees, 2004). Another GIS software called . 

GIWIN (Geographic Information Workshop for Windows) was especially developed for 

land use planners and decision makers to introduce them to the capabilities of GIS and 

provide decision support in solving a MOLAA problem (Ren, 1997). This software is 

based on the same principle as the MOLA module in IDRISI®. GIWIN uses suitability 

values in the range 0-100 and directly employs the suitability maps for allocating the 

desired area to a specified land use. Both the MOLA module and GIWIN can provide 

decision support in solving a MOLAA problem. However, their efficiency in solving 

the same problem has not yet been compared. 

6.3 Conclusion 

Different rank maps derived from the land use suitability maps with different 

magnitudes and ranges do not truly represent the relative value among different land 

uses for a land unit. Hence, land use allocation by the MOLA module does not use 

relative suitability as a measure of allocating land use to a cell, rather, it tries to allocate 

each land use with the highest rank value. This resulted in a bias towards these land uses 

with lower area requirement by allocating more suitable land units to them. 
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Due to the inherent bias towards the land uses that require less area, the MOLA module 

could not optimise the allocation for all land uses desired by users or decision makers. 

6.4 Summary 

The MOLA module in IDRIS!® was applied to a hypothetical MOLAA problem using 

the ordinal and continuous land use suitability models. A detailed analysis of the output 

found an inherent bias in this module towards those land uses with a smaller area 

requirement over land uses with a larger area requirement. The MOLA module tries to 

secure the most suitable land units to a single land use but fails to maximize overall land 

use suitability as it is unable to allocate land uses based on the relative suitability. The 

land use allocation and spatial compactness tend to vary between using the ordinal and 

continuous land use suitability models. However, the land use allocation was more 

spatially compact in the continuous land use suitability model compared with the 

ordinal model. Unlike the UPOS Grid function in Arclnfo ® and the AML method, this 

module is capable of allocating the desired area to specified land uses but does not 

allow for improving the spatial compactness for more coherent land use allocation. 

The following Chapters 7 and 8 will discuss the application of Simulated Annealing and 

Tabu Search to the same MOLAA problem, respectively. Chapter 9 presents a 

comparison of the MOLA module and two combinatory methods in terms of their 

performance in solving the same MO LAA problem. 
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Chapter 7 

RESULT AND DISCUSSION II - APPL YING SIMULA TED 
ANNEALING TO A HYPOTHETICAL MOLAA PROBLEM 

This chapter presents the results of applying Simulated Annealing to the hypothetical 

MOLAA problem. The algorithm with different combinations of annealing parameters 

(discussed in Chapter 5) were applied to the three cost models (ordinal, continuous and 

fuzzy) with the random, cheapest and greatest difference initial input models (described 

in Chapter 5) in solving the MO LAA problem. The performance of the algorithm was 

evaluated, using the minimization of the cost function, spatial compactness and the 

computation time taken by the algorithm. Table 7.1 summarises the parameters, and 

provides a brief description and a null hypothesis relating to their specific influences on 

the cost function minimization or spatial compactness in solving a MO LAA problem. 

Table 7.1 A summary of the parameters, their descriptions and hypothesis 

Parameters Brief description Null Hypothesis 
A function used to cool down the initial The minimization of the 

Cooling control parameter - it affects the pattern of cost function does not differ 
Function reduction in the initial control parameter and significantly among the 

the number of iteration required. three cooling functions. 
Initial value on which cooling takes place by The improvement of the 

Initial the specified rate in each step - it affects the cost function does not differ 
Control level of acceptance of higher cost functions significantly among 
Parameter and hence determines the capacity for different values of initial 

avoiding local minima. control parameter. 
A fixed rate at which initial control parameter The minimization of the 

Cooling rate 
is reduced in each step - it controls the speed cost function does not differ 
of the algorithm by determining the number of significantly among the 
iterations step. cooling rates. 
Number of exchanges of land uses allowed The minimization of the 

Swapping between two land units in each step - it affects cost function does not differ 
rate the cost minimization by controlling the significantly among the 

number of cold-swaps and hot-swaps. swaooing rates. 
A function that takes into account of the land The spatial compactness 

Compactness uses in the four neighbours of the selected does not differ significantly 
function cells - it affects the compactness by rewarding among the different values 

a move that increases the spatial compactness. of the compactness factor. 
Initial solutions generated by random, The minimization of the 

Initial input cheapest and greatest difference methods - cost function does not differ 
solution the initial solution may influence the output significantly among three 

and performance of the algorithm. initial input solutions. 
Suitability models derived from the criteria The spatial compactness 

Cost model 
maps using ordinal, continuous and fuzzy- does not differ significantly 
WLC method - the models may influence on among three cost models. 
the output and performance of the algorithm. 
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7.1 Results 

7. 1.1 Determining initial control parameter for Simulated Annealing 

The hot-swap acceptance percentages of 50, 80 and 98 in the first cooling step were 

used to find low, medium and high values of initial control parameters (T1) for different 

datasets (discussed in Chapters 3 and 5). Tables 7 .2 and 7 .3 depict the values of initial 

control parameters at 50, 80 and 98 percent of hot-swap acceptance for all three grid 

sizes and initial input solutions (random, cheapest and greatest difference) of the ordinal 

and continuous cost models, respectively. In the case of the fuzzy cost model, these 

values were found to be relatively higher than in the ordinal and continuous cost 

models. However, the same values of initial control parameter were found for all three 

initial input solutions in the fuzzy model. The initial control parameters for fuzzy model 

are given in Table 7.4. 

Table 7.2 Initial control parameters for ordinal model at different hot-swap 
acceptance percentages 

s. Initial Input Solution 
N. Grid size Random Cheapest Greatest difference 

50% 80% 98% 50% 80% 98% 50% 80% 98% 
1 Small 175 600 10000 170 550 10000 170 550 1000 
2 Medium 325 1125 13000 315 1100 13000 325 1100 14000 
3 Lar2ie 360 1250 15000 360 1250 15000 365 1250 15000 

Table 7.3 Initial control parameters for continuous model at different hot-swap 
acceptance percentages 

S.N. Initial Input Solution and hot-swap acceptance % 
Grid size Random Cheapest Greatest difference 

50% 80% 98% 50% 80% 98% 50% 80% 98% 
1 Small 300 1000 12000 300 1100 11500 325 1200 12500 
2 Medium 375 1300 16000 385 1375 17000 400 1375 17000 
3 Large 500 1800 20000 475 1725 22000 500 1800 20000 

Table 7.4 Initial control parameters for fuzzy model at different hot-swap 
acceptance percentages 

S.N. G 'd. n size 

1 Small 
2 Medium 
3 Large 

Initial input parameter at hot-swap acceptance % 
50% 80% 98% 
1500 4800 45000 
3000 11000 125000 
3700 13000 145000 

7.1.2 Cooling function for Simulated Annealing 

In order to find the best cooling functions for solving a MOLAA problem, three cooling 

functions as given by Modes 1, 2 and 3 (described in Chapter 5) were compared for 
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improving the cost function using the medium grid of ordinal cost model. Table 7.5 

summarizes the annealing schedules and corresponding mean cost functions by the 

algorithm in Modes 1, 2 and 3. The algorithm in Mode 1 produced the maximum 

improvement in the cost function, achieving the lowest values of mean cost functions 

for all the annealing schedules. The algorithm in Mode 2 improved the cost function 

slightly more than in Mode 3. Figures 7.1 and 7.2 illustrate the distribution of cost 

functions, their mean values and ranges in Mode 1 and compare them with Mode 2 and 

Mode 3 at a very slow cooling rate. 

The improvement in the cost function in Mode 1 was found to be significantly different 

from the mean cost functions of Modes 2 and 3 at 95 percent confidence interval. Thus 

the null hypothesis was rejected about the same influence of these three Modes on the 

cost function minimization (see Table 7.1). In the large grid, these cooling functions had 

the same influence on the cost function minimization as in the medium grid. Because of 

the significant improvement in the cost function in Mode 1, this cooling function was 

chosen for further investigation of the application of Simulated Annealing in solving a 

MO LAA problem. 

Table 7.5 Mean cost functions at different annealing schedules in Modes 1, 2 and 
3 for the medium grid of ordinal cost model 

Total Cost Function = 4153000 + 
. Very fast cooling rate (CR)= (0.2) Fast cooling rate (CR)= (0.5) 

Swappmg--~------------~------------------------------------------------------~-~-----

rate T N. Mode 1 Mode 2 Mode 3 T N. , Mode 1 Mode 2 Mode 3 1 cs 1 cs 
CF CF CF CF CF CF 

9619 H 71 3375 403692 505624 L 90 2457 35839 42301 
96190 L 29 1043 10574 5232 L 31 1030 10169 14881 

480950 H 17 860 5322 15561 M 19 870 4335 5042 
961900 H 13 833 2121 2172 M 16 824 2004 2087 

Swapping 
Slow cooling rate (CR)= (0.8} Very slow cooling rate (CR)= (0.98) 

rate T1 Ncs 
Mode 1 Mode2 Mode3 

T1 Ncs 
Mode 1 Mode2 Mode 3 

CF CF CF CF CF CF 
9619 L 97 2427 33420 39883 M 331 1847 35363 40717 
96190 M 46 1039 18687 27991 L 277 827 2314 2331 

480950 M 37 827 3603 4340 L 289 752 970 2331 
961900 M 36 794 1830 2013 M 355 732 1007 1050 

Note: The algorithm minimized the cost function better in the Mode 1 than in the Modes 
2 and 3. 
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Figure 7.1 Comparison of cost functions at very slow cooling rates in 
Mode 1 with Mode 2 
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Figure 7.2 Comparison of cost functions at very slow cooling rates in 
Mode 1 with Mode 3 

7. 1.3 Cost function minimization by different parameters 

The minimization of the cost function was actually brought about by a combination of 

initial control parameter, cooling rate and number of swaps per step used in the 

annealing schedule in Mode 1 cooling function. The influence of these parameters on 

cost minimization will be investigated by applying the algorithm in the random input 

solution of ordinal cost model in the medium grid MOLAA problem. 
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7 .1.3.1 Influence of initial control parameter on cost function 

Table 7 .6 presents the mean cost functions at low, medium and high values of initial 

control parameter, at three values of cooling rate and four values of number of swaps 

per control parameter step for the medium grid of the ordinal cost model. The statistical 

test at 95 percent confidence interval did not find any significant difference among these 

mean cost functions at the three values of initial control parameter, except for one case. 

The mean cost functions at the low value of initial control was found to be significantly 

different from the mean at the medium value. The significantly different mean cost 

functions are indicated by superscript (M) in Table 7 .6. 

Table 7.6 Mean cost function at low, medium and high values of initial control 
parameters (T;) for medium grid of ordinal cost model 

Swapping 
rate 

9619 
96190 

480950 
961900 

~-Y~!Y-~f<,t_:>!_~££~_!~te co .2) 
Low T1 Medium T1 High T1 

3397 3433 3375 
1043M 1094 1066 

869 883 860 
838 842 833 

Total Cost Function = 4153000 + 

2457 
1030 
876 
825 

Fas"t_~_oolii~KEate (0.5) ""~--~-
Medium T1 High T1 

2552 2544 
1076 1044 
870 878 
824 834 

Swapping Slow cooling rate (0.8) Very slow cooling rate (0.98) 
rate Low T1 Medium T1 High T1 Low T1 Medium T1 High T1 

9619 2427 2625 2604 1874 1847 1847 
96190 1062 1039 1066 827 834 828 

480950 830 827 835 752 759 756 
961900 801 794 798 738 732 733 

Note: The mean cost functions were not significantly different among three values of 
initial control parameter except for one case shown by superscript (M). 

The significant difference of mean cost function in only one case out of 64 comparisons 

was not found adequate to reject the original hypothesis regarding the influence of 

initial control parameter on the cost function minimization (see Table 7.1). Thus, the 

hypothesis was accepted. 

7 .1.3.2 Influence of cooling rate (CR) on the cost function 

Four cooling rates with reduction factors, 0.2, 0.5, 0.8 and 0.98, were applied in the 

annealing schedules. The mean cost functions for thirty runs at these cooling rates at 

the high value of initial control parameter and four values of swapping rates are 

presented in Table 7.7. The very slow (CR) = (0.98) cooling rate produced the lowest 

mean cost function for all combinations of annealing schedules. The variation in the 

cost function at different runs with the same annealing schedule decreased from the very 
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fast cooling rate (CR) = (0.2) to the very slow cooling rate (CR) = (0.98) . These mean 

cost functions were statistically tested for significance difference at 95 percent 

confidence interval. The mean cost functions significantly different from the mean at 

other cooling rates, are indicated by superscript. It implies that the algorithm did not 

produce the same result for the cost minimization at different cooling rates. Hence, the 

null hypothesis was rejected. 

Table 7.7 Cost function at very fast, fast, slow and very slow cooling rates for 
medium grid of ordinal cost model 

Total Cost Function (CF)= 4153000+ 
Swapping Cost function at cooling rates 

rate Very fast Fast Slow Very slow 
9619 3375F,S,VS 2544 VF,VS 2604 VF,VS 1847 VF,F,S 
96190 1066vs 1044 vs 1066 vs 828 VF,F,S 

480950 860vs 878 vs 835 vs 756 VF,F,S 
961900 833 S,VS 834 S,VS 798 VS 733 VF,S,F 

Note: The mean cost functions were found to be significantly different at different 
cooling rates and the significant difference means were shown by superscript 
indicating very fast, fast, slow and very slow cooling rates by VF, F, S, and VS, 
respectively. 

The improvement in the cost function against the cooling steps at these cooling rates is 

illustrated in Figure 7.3, applying the swapping rate (SR) = (lOO*Vc) and high value of 

initial control parameter. The cost function was minimized quickly (in less than 70 

control parameter steps) at the very fast, fast and slow cooling rates whereas the very 

slow cooling rates took more than 450 control parameter steps to minimize the cost 

function. 
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Figure 7.3 Improvement in the cost function at different cooling rates 
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The cooling rates determined the number of cold-swaps and hot-swaps acceptances in 

the algorithm. The number of cold-swaps and hot-swaps at different cooling rates are 

illustrated in Figures 7.4 and 7.5, respectively. The higher number of hot-swaps was 

accepted with the slower cooling rates from the very fast to very slow cooing rates. The 

number of cold-swaps was controlled by the hot-swap acceptances. However, the 

algorithm accepted a slightly higher number of cold-swaps than the hot-swaps for every 

control parameter step at all cooling rates. After the hot-swaps became zero, the 

algorithm accepted only a few cold-swaps and terminated after a couple of control 

parameter steps meeting the stopping criterion at which the cold-swaps became zero. 
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Figure 7.4 Accepted number of cold-swap at different cooling rates 
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Figure 7.5 Accepted number of hot-swaps at different cooling rates 
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The total numbers of cold-swaps and hot-swaps accepted depend on the number of 

cooling or control parameter steps. In Mode 1 cooling function, the cooling rate was 

found to determine the number of cooling steps for the same values of initial control 

parameters and the swapping rate. The number of control parameter steps at different 

cooling rates is shown in Figure 7 .6 for four swapping rates. Among the cooling rates, 

the number of control parameter steps (cooling steps) was found to increase from a very 

fast cooing rate to a very slow cooing rate for the same value of initial control parameter 

and swapping rate. 
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Figure 7.6 Number of control parameter steps at different cooling rates 

7.1.3.3 Influence of swapping rate (SR} on the cost function 

The swapping rate (SR) determined the number of swaps per control parameter step. The 

influences of four swapping rates (as multiples of one, ten, fifty and one hundred times 

the valid cells in the input grid) in the annealing schedule were assessed by their role in 

improving the cost function. The influences of these swapping rates (SR) = (1 *Ve), · 

(lO*Vc), (50*Vc) and (lOO*Vc) are displayed at the high value of initial control 

parameter using four cooling rates (CR)= (0.2, 0.5, 0.8 and 0.98) in Figure 7.7. 
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Figure 7.7 Cost function minimization by four different swapping rates at very 
fast cooling rate and high value of initial control parameter 

The lowest swapping rate (SR)= (1 *Ve) and the highest swapping rate (SR)= (lOO*Vc) 

produced a minimal and maximum improvement in the cost function for all the cooling 

rates and initial control parameters, respectively. At the higher number of swaps (SR) = 

>=(50*Vc), the large numbers of hot-swaps and cold-swaps were accepted at all cooling 

rates. Thus, the highest improvement in the cost function was achieved at all cooling 

rates by reducing the differences in the cost function at these cooling rates for all values 

of initial control parameters. The mean cost functions were found to be significantly 

different between the swapping rate (SR)= (50*Vc) and (SR)= (lOO*Vc) at 95 percent 

confidence intervals. Therefore, the findings did not support the null hypothesis (see 

Table 7 .1) and it was rejected. 

7.1.4 Optimum cost function for different cost models 

Among three initial input models, the random and greatest difference initial input 

solutions had the highest and lowest value of cost function in the initial input solution 

(see Chapter 5). Hence the greatest difference and random input solutions were chosen 

for estimating the near-optimum cost function. The annealing schedule, run time, cost 

functions and spatial compactness for random and greatest difference initial input 

solutions are given for all three grids of the ordinal, continuous and fuzzy cost models 

in Tables 7.8, 7.9 and 7.10, respectively. 
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Table 7.8 Cost functions closest to the global cost functions for all three grids of 
ordinal cost model 

-"~= W//M/.MW///,WffiV//ff-@/;-W$·SS"W,,..;-"9>m!C""'6'/-=-w/..w,w-=-ffiV//#~//,,,,_/,,_____#,,__w,w///MM'ffiVAl'/-""""1,V,-W//H-=-<¥/-=--d//HffiV/.'>YM="-

Random solution 
S. Annealing schedule Run Near CF No of Change 
N. Grid size time optimum Reduction patches 

CR T1 SR h:m CF % Np 
in Np 

1 Small 0.2 L 10,000 <0:01 40910 12.981 17 - 10 
2 Medium 0.98 H 2,885,700 1 :34 4153709 21.500 352 -1645 
3 Large 0.98 H 55,835,400 62:15 68283447 26.990 4105 - 34739 

Greatest difference initial in2ut solution 
1 Small 0.2 L 10,000 <0:01 40752* 10.029 15 +6 
2 Medium 0.98 H 2,885,700 1:33 4153450 8.954 375 + 152 
3 0.98 H 61:14 68283150 10.935 4115 - 267 

Table 7.9 Cost functions closest to the global cost functions for all three grids of 
continuous land use suitability model 

~A,,#//"""1<'-=---""""'<'~H,OW,--~.»w.--~--'- --- ,_, 

Random solution 
S. Annealing schedule Run Near CF No of Change 
N. Grid size 

CR T1 SR 
time optimum Reduction patches in Np 
h:m CF % Np 

1 Small 0.2 L 10,000 <0:01 75850* 15.508 9 -7 
2 Medium 0.98 H 2,885,700 3:26 7512893 16.219 281 - 1724 
3 Large 0.98 H 55,835,400 68:28 129697574 21.901 3365 - 35608 

Greatest difference initial in_Qut solution 
1 Small 0.2 L 10,000 <0:01 75850 5.317 9 +4 
2 Medium 0.98 H 2,885,700 3:44 7512273 8.099 281 - 43 
3 0.98 H 60:34 129698148 19.033 3373 - 2569 

Table 7.10 Cost functions closest to the global cost functions for all three grids 
of fuzzy land use suitability model 

Random initial solution 
S. Annealing schedule Run Near CF No of Change 
N. Grid size time optimum Reduction patches 

CR T1 SR h:m CF % Np 
in Np 

1 Small 0.2 L 10,000 <0:01 249764 19.291 11 - 14 
2 Medium 0.98 H 2,885,700 1:58 29615668 27.493 285 + 109 
3 Large 0.98 H 55,835,400 61:23 451317514 36.451 3149 - 35554 

Greatest difference initial input solution 
1 Small 0.2 L 10,000 <0:01 248292* 5.621 12 +4 
2 Medium 0.98 H 2,885,700 2:00 29612198 18.970 300 -26 
3 0.98 H 70:05 451317534 23.036 3146 - 1197 

Note: The symbol * indicates the optimum cost function. 

In the small grid, the cost functions in the greatest difference initial input solution were 

not more improved over the values given in these Tables for all cost models. These cost 

functions were taken as the optimum (global) cost function for respective grid size, 

initial input solution and cost model. In all cost models, these optimal cost functions for 

the small grid were achieved in the annealing schedule with (CR, T1, SR) = (0.2, low, 

100* Ve) in less than one minute running time. The near-optimal cost functions for the 
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medium and large grids were obtained by applying the algorithm with the annealing 

schedule (CR, T1, SR)= (0.98, high, 300*Ve). Even the higher value of swapping rate 

(SR) = (>300* Ve) did not improve the cost function significantly more than the 

swapping rate (SR) = (300* Ve). Therefore, the cost functions obtained by the annealing 

schedule with (CR, T1, SR) = (0.98, high, 300*Ve) were taken to be the closest to the 

global optimum and were used for comparing the performance of the algorithm under 

different annealing schedules. 

The optimum or near optimum cost functions for the small and medium grids were 

found smaller in the greatest difference initial input solution than the random input 

solution for all cost models. However, the cost functions were smaller in random initial 

input solution for large grids of continuous and fuzzy cost models. This implies that the 

algorithm could improve the cost function better in the random initial input solution 

than in the greatest difference initial input solution at the higher swapping rate (SR) = 

(=>300* Ve). The random initial input solution and near-optimal land use allocation to 

the MO LAA problems are shown in Figure 7 .8 for the small, medium and large grids. 

Tables 7 .8 to 7 .10 also present the percentage reductions in the cost functions calculated 

from the initial cost function for the respective initial input solutions. Among the cost 

models, the algorithm reduced the cost function to its maximum in fuzzy cost models 

and this was followed by the ordinal cost models for the random initial input solution. 

Along with the cost function minimization, the algorithm produced fewer patches in the 

final solution than in the random initial input solution, resulting in a spatially compact 

land use allocation. In some cases, the number of patches was higher in the near-optimal 

solution than in the greatest difference initial input solution. 
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Figure 7.8 Random input solutions and near-optimal land use allocation by 
Simulated Annealing for the large, medium and small grids using the 

ordinal cost model 
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7.1.5 Assessing the performance of simulated annealing in solving a 
MOLAA problem 

7.1.5.1 Analysing the spatial compactness without using the 
compactness function 

The number of patches with corresponding cost functions is presented in Table 7 .11 for 

the random initial input solution of the large grid of all cost models. The total number of 

patches under the eight-neighbours rule generally decreased with an improvement in the 

cost function in all cost models. For a small difference in the cost function, the number 

of patches might be higher even at the lower cost function. The solutions even with the 

same cost function might not have the spatial compactness and spatial pattern in the 

land use allocation. The spatial compactness was highest in the fuzzy cost model 

followed by the continuous model. The ordinal cost model gave the lowest spatial 

compactness in all three cost models. 

Table 7.11 Number of patches (Np) at for the random initial input solution of 
large grids 

Total cost function for ordinal model= 68283000+ 
Total cost function for continuous model= 129703000+ 

Total cost function for model= 451321000+ 
No of swaps per Ordinal model Continuous model model 

step CF Np CF Np CF Np 
186118 109348 6183 219566 5875 1112483 5267 

1861180 5135 4262 17277 3608 33179 3230 
9305900 3327 4105 4818 3471 964 3127 
18611800 3001 4137 1822 3453 117 3124 

Note: The spatial compactness was found to be more enhanced in the fuzzy model than 
in the continuous and ordinal models in the large grid MOLAA problem. 

In the medium grid MOLAA problem, the spatial compactness was found to be 

inconsistent among the three cost models (ordinal, continuous and fuzzy). When the 

spatial compactness was analysed for two medium grids obtained from the large grid, 

the algorithm produced a more spatially compact allocation in the continuous model in 

one grid and in the fuzzy model in another grid. The land use allocation was even more 

spatially compact in the ordinal model than in the continuous model in the latter grid. 
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7.1.5.2 Computation time 

Figure 7.9 illustrates computation time at a very slow cooling rate with four different 

swapping rates (SR) = (1 *Ve), (lO*Vc), (50*Vc) and (lOO*Vc) in the medium grid using 

the greatest difference initial input solution for all cost models. The computation time 

increased with the higher swapping rates and cooling rates for all cost models. 

However, the algorithm terminated earliest in the ordinal cost model and took the 

longest time to deliver a solution in the continuous cost model. The computation time 

increased from the very fast to the very slow cooing rates for the same swapping rate 

with the higher number of control parameter steps. 
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Figure 7.9 Average computation time at very slow cooling rate and four 
swapping rates for all three cost models in the medium grid 

The run time -markedly increased with the increase in the grid size under the influence 

of swapping rates and cooling rates. The run times for the large grid of all cost models 

for the random input model are given in the Table 7 .12. Among the cost models, the 

ordinal cost model had the lowest run time. Except in a few annealing schedules, the 

fuzzy cost model had the highest run time. 
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Table 7 .12 Run time for the random initial input solution of the large grid size for 
all cost models 

Swaps per 
step 

186118 
1861180 
9305900 
18611800 
Swaps per 

step 
186118 

1861180 
9305900 
18611800 

___ Veiy_ fast_cooling_~~!-~{O.~) ____________ _E~!_~_<?_2lin,gI,~~(Q_:~J ______ _ 
Ordinal Continuous Fuzzy Ordinal Continuous Fuzzy 

0:02 0:02 0:02 0:04 0:03 0:04 
0:16 0:16 0:17 0:25 0:38 0:38 
1 :08 1 :21 1 :22 0:56 2:46 2:21 
1:46 2:43 2:45 1:59 3:20 3:11 

Very fast cooling rate (0.8) Fast cooling rate (0.98) 
Ordinal Continuous Fuzzy Ordinal Continuous Fuzzy 

0: 11 0:13 0:14 0:13 0:18 0:22 
0:37 0:48 0:57 2:06 2:12 2:28 
1 :57 2:17 2:30 10:10 10:14 11 :09 
2:49 3:26 5: 13 20:24 20:28 23:25 

7.1.6 Appropriate annealing schedule for Simulated Annealing in 
solving a MOLAA problem 

An appropriate annealing schedule is a combination of all annealing parameters at 

which the algorithm minimizes the cost function close to optimum or near optimum cost 

function within a reasonable time. The algorithm delivered an optimum solution with 

annealing schedule (CR, T1, SR) = (0.2, low, 100* Ve) for a small grid (10 by 10 cells) 

size problem in less than a minute in a Pentium IV PC. For the medium grid (100 by 

100 cells) size problem, the same PC took less than three to four hours for improving 

the cost function to near optimum in continuous cost model (see Table 7.9). However, 

the algorithm could deliver a close solution to the near-optimal solution in much less 

computation time. Hence, eight combinations of the annealing schedule using two 

swapping rates (SR)= (50*Ve) and (lOO*Ve), two cooling rates (CR)= (0.2) and (0.98) 

at the high (H) and low (L) values of initial control parameter were applied to the 

random initial input solution of the ordinal model in the medium grid MOLAA 

problem. Table 7.13 presents a comparison of the solutions for the average cost 

function and spatial compactness and the computation time taken by the algorithm with 

that of near optimum cost functions at the annealing schedule (CR, TJ, SR)= (0.98, high, 

300* Ve) for the random and greatest difference initial input solution of the ordinal cost 

model. 

The algorithm with (CR, T1, SR)= (0.98, high, lOO*Ve) produced a solution very close to 

the near-optimal solution. The algorithm with the annealing schedule (CR, T1, SR)= (0.2, 

high, 100* Ve) produced a better solution than the annealing schedules (CR, T1, SR) = 

(0.2, low, 50* Ve), (0.2, high, 50* Ve) and (0.2, low, 100* Ve) but produced slightly less 
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improvement in the cost function than the annealing schedule (CR, T1, SR)= (0.98, high, 

100* Ve). However, the computation time was about one minute for the annealing 

schedule (CR, T1, SR)= (0.2, high, lOO*Ve) and more than an hour for the annealing 

schedule (CR, T1, SR) = (0.98, high, 100* Ve). Compromising the slight increase in the 

cost function, the annealing schedule (CR, T1, SR)= (0.2, high, 100* Ve) was found to be 

appropriate in solving a MOLAA problem in the medium grid. 

Table 7.13 Comparing cost function, spatial compactness and run time at 
different annealing schedules in the random initial input solution of 

the ordinal cost model for the medium grid 

Total cost function= 4153000+ 

~nnealii~_~chedul_e ~--~_g_<:>st functio~·---- -~p_<_tti~c::_orr1:12~ctn~~Run Jim~_h:~-
T1 CR SR Average Change % Change Average Change Average Saving 
L 0.2 50*Vc 825 +116 0.00279 396 +44 0:01 1:33 
L 0.2 lOO*Vc 869 +160 0.00385 364 +12 0:01 1:33 
H 0.2 50*Vc 898 +189 0.00455 365 +13 0:02 1 :32 
H 0.2 lOO*Vc 804 +95 0.00229 364 +12 0:01 1:33 
L 0.98 50*Vc 753 +44 0.00106 367 +15 0:19 1: 15 
L 0.98 lOO*Vc 733 +24 0.00058 363 +11 0:25 1 :09 
H 0.98 50*Vc 757 +48 0.00115 354 +2 0:31 1 :03 
H 0.98 100* 730 +21 0.00051 366 +14 1:02 0:32 

In the case of a large grid, the algorithm took more than 60 hours to generate the near­

optimal solution with the annealing schedule (CR, T1, SR)= (0.98, high, 300*Ve) (see 

Section 7.1.4). In order to find an appropriate annealing schedule for the large grid, the 

same four annealing schedules (used in the medium grid) were applied and compared 

with the near-optimal solution for the random initial input solution of the ordinal cost 

model. Table 7.14 presents a comparison of the differences in the cost function, run 

time and compactness between these annealing schedules and the near-optimal solution. 

The cost function was much improved at the annealing schedule (CR, T1, SR) = (0.98, 

high, lOO*Ve) and delivered the solution in more than 20 hours computation time. The 

annealing schedule with the very fast cooling rate (CR) = (0.2) was found to be very 

efficient at both swapping rates and initial control parameters. The annealing schedule 

(CR, T1, SR)= (0.2, high, lOO*Ve) produced the lowest mean cost function with the least 

variance compared to other annealing schedules solutions (CR, T1, SR) = (0.2, low, 

50* Ve), (0.2, high, 50* Ve) and (0.2, low, 100* Ve). Compromising between the cost 

function and the computation time, the algorithm with annealing schedule (CR, T1, SR)= 

(0.2, high, 100* Ve) was found appropriate in solving a large grid MO LAA problem. 
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Table 7.14 Comparing cost function, spatial compactness and run time at 
different annealing schedules in the random initial input solution of 

the ordinal cost model for the large grid 

Total cost function= 68283000+ 
~!1_11ealing Schedule Cost fu,gctiS?_~----~__§patia~omp~ctnes_s Run Time h:m --------

T1 CR SR Average Change % Change Average Change Average Saving 
L 0.2 50*Vc 3347 +2900 0.00424 4133 +28 1:09 61:06 
L 0.2 lOO*Vc 3118 +2671 0.00391 4166 +61 1 :24 60:51 
H 0.2 50*Vc 3235 +2788 0.00408 4150 +45 1: 10 61:05 
H 0.2 lOO*Vc 2990 +2543 0.00372 4146 +41 1:37 60:38 
L 0.98 50*Vc 1092 +645 0.00094 4126 +21 7:00 55:15 
L 0.98 100*Vc 764 +317 0.00046 4092 -13 14:12 48:03 
H 0.98 50*Vc 1062 +615 0.00090 4106 +l 10:12 52:03 
H 0.98 100* 762 +315 0.00046 4096 -9 20:26 41:49 

7. 1. 7 Applying compactness function in solving a MOLAA problem 

In order to apply the compactness function in the algorithm, compactness factors (F c) = 

(25, 50, 100 and 200) were applied using the appropriate annealing schedule with (CR, 

T1, SR) = (0.2, high, lOO*Vc). Figure 7.10 displays the improvement in the spatial 

compactness using these compactness factors in the ordinal data type model (random 

input) of the medium grid. The cost function, run time and spatial compactness in terms 

of number of patches in the eight-neighbours rule is shown in Tables 7.15 and 7 .16 for 

medium and large grids using random and greatest difference initial input solutions of 

ordinal cost model. 

Table 7.15 Spatial compactness after applying compactness function at 
appropriate annealing schedule in the medium grid of ordinal cost model 

Total cost function= 4153000+ 

Compactness ---~~----Random JE~L---~~-,-----Gr~ate~_~jfference inpu,t 

Factor Cost Run No.of Cost Run No. of 
function time h:m patches function time h:m patches 

0 863 0:01 372 512 0;01 386 
25 62072 0:06 65 63344 0:04 74 
50 126174 0:08 52 124254 0:04 50 
100 199508 0:07 39 202789 0:09 43 
200 251647 0:10 38 275162 0:10 27 

Note: The spatial compactness was enhanced by using the higher value of compactness 
function in the algorithm for the medium grid. 
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Table 7.16 Spatial compactness after applying compactness function at 
appropriate annealing schedule in the large grid of ordinal cost model 

Total cost function= 68283000+ 

Compactness Random Greatest difference 
Cost Run No. of Cost Run No. of Factor 

function time h:m 12atches function time h:m 12atches 
0 3001 1:46 4137 2822 1:55 4152 

25 1284085 4:11 659 1277985 4:11 651 
50 2115753 4:12 495 2134094 4:11 468 
100 3075799 4:12 392 3097252 4:11 399 
200 4519682 4:12 360 4166573 4:09 348 

W#/hW-/ . .W..:-~,.H-M'MW..,,,,,,,..#..WH,WMWHH////.-»>W.-»'H,W/,»»»>:«< __ ,,_,,,./;:>W.W.~'**"*'//MVMO»»»»W#.«««')Wm>w.~-,.-.. ,,<'/.««««WA<*'MOW-""'-· W///.W//._,,,_w __ ,,,,,..,._,,, __ ,...,.;..io=w-/.~~~-

Note: The spatial compactness was enhanced by using the higher value of compactness 
function in the algorithm for the large grid. 

The improvement in the spatial compactness in the continuous and fuzzy cost models 

are given in Annex 4 for the medium and large grid using these values of compactness 

factors. The spatial compactness (with lower value of the number of patches) improved 

with the higher values of compactness factor from 25 to 200 for the medium grid. The 

degree of improvement in spatial compactness is largely controlled by the compactness 

factor values and the range of the cost values in the cost models. These compactness 

factor values were found to be the most appropriate for the ordinal cost model with the 

lowest range of cost values. The fuzzy cost model had the largest range of cost values, 

therefore, these compactness factors did not improve the spatial compactness more in 

the fuzzy model than in the ordinal and continuous models. 
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Figure 7.10 Improvement in the spatial compactness applying different 
compactness factors to the ordinal model for the medium grid MOLAA problem 

137 



7.1.8 Appropriate initial input solution and cost model in solving the 
MOLAA problem 

Table 7.17 presents the average cost functions, run time and spatial compactness by 

applying Simulated Annealing, using the appropriate annealing schedule (CR, T1, SR)= 

(0.2, high, lOO*Vc) to the medium and large grid MOLAA problem. The improvement 

in the cost function measured as compared to the initial cost function for the random 

initial input solution was found to be the highest for the fuzzy cost model in both grid 

sizes. In the medium grid, the minimization in the cost function was found better in the 

cheapest and the greatest difference initial input solutions than in the random initial 

input solution. The algorithm also performed better when using the random initial input 

solution than in the cheapest or greatest difference initial input solutions in the large 

grid. These results rejected the null hypothesis regarding the influence of the different 

initial input solution on cost function minimization. 

The algorithm produced a more spatially compact land use allocation using the fuzzy 

model in the large grid. However, the spatial compactness was found to be inconsistent 

among the three models in the medium grid (see Section 7.1.5.1) The mean number of 

patches was found to be significantly different among the solutions by using the three 

cost models. Hence the null hypothesis regarding the influence of the cost model on the 

spatial compactness was rejected. 

Table 7.17 Comparing the average cost functions, run time and spatial 
compactness for all initial input solutions and cost models in the medium and 

large grid MOLAA problem 

Initial Medium Grid Grid 
Cost model Input 

CF 
RT Np 

Change 
CF 

RT Np 
Change 

solution h:m in CF% h:m in CF% 
Random 4153823 0:01 363 -21.498 68285985 1:54 4134 -26.987 

Ordinal Cheapest 4153559 0:01 372 -21.503 68285794 1:42 4111 -26.988 
Greatest 4153534 0:01 361 -21.504 68285711 1:43 4140 -26.988 
Random 7512941 0:01 276 -16.218 129706140 2:43 3457 -21.896 

Continuous Cheapest 7512343 0:01 278 -16.225 129706543 2:43 3450 -21.895 
Greatest 7512321 0:01 277 -16.226 129706609 2:43 3453 -21.895 
Random 29615870 0:02 295 -27.492 451320049 2:41 3124 -36.451 

Fuzzy Cheapest 29612391 0:02 293 -27.501 451320552 2:38 3123 -36.451 
Greatest 2 96124 21 0:02 296 -27.501 451320263 2:41 3124 -36.451 

~-->W.«««om,W>m'MW.««<>~· • -· ~-. >• O*.-#..m-.«~W/.«««««<0«-?-.-W/H.«W,,,..,,,..#/..Wh>""""~· ~·-·~.<~"*".«-. ~.">WC-<00»:«<'//H-.ov/N;W.<O»X«->;-w.«<?.«-~~· 
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7.2 Discussion 

This part of the research applied Simulated Annealing with three different cooling 

functions in the annealing schedule. The reduction of the initial control parameter by a 

specified constant factor at every control parameter or cooling step (Mode 1) performed 

better than the other two cooling functions (see section 7.1.2). In Mode 1, the 

acceptance of hot-swaps allows the system to escape from being trapped in the local 

minimum at the expense of increasing the cost function, whereas the stopping rule 

(cold-swap = 0) allows enough cold-swaps to improve the cost function to its minimum. 

The best performance of this cooling function over others can be attributed to the 

number of possible cold-swaps to minimize the cost function increased by the hot­

swaps. In Modes 2 and 3, the algorithms accepted moves with increased cost functions 

and terminated after attaining the prescribed number of control parameter steps (Ncs) 

while the cost minimization was in progress. It means that the algorithm stops before 

the cost function culminates at its minimum. 

Mode 1 was also found to be easy to understand and relatively simple to implement in 

an annealing schedule. Only the initial control parameter (T1) and the cooling rate (CR) 

need to be specified. In other modes, the annealing schedule requires defining the final 

value of the control parameter and the number of control parameter steps (N cs) in 

addition to the initial control parameter. In the case of Mode 1, the algorithm always 

uses final control parameter (TN) value as zero and does not require Ncs to be defined. 

The stopping rule for terminating the algorithm is also very simple and straightforward 

in this cooling function, as the algorithm will stop as soon as cold-swap becomes zero. 

In the case of Modes 2 and 3, the number of cooling steps (Ncs) and the final control 

parameter (TN) determine the stopping time for the algorithm. However, I have not 

found any way of prescribing these parameters for an appropriate annealing schedule in 

these modes. 

This research found a similar influence of three initial control parameters (T1) on cost 

minimization to that described by van Laarhoven (1987). The annealing schedule with 

initial control parameters (T1) = (50, 80 and 98 percent of hot-swap acceptance in the 

first cooling step) had the same influence on the cost function minimization at the same 

cooling rate and the swapping rate. Johnson et al. (1991) also found that the higher 

number of hot-swap acceptance at the high value of initial control parameter does not 
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contribute significantly to improving the cost function in the final solution. However, 

the values of initial control parameter are determined by the range and magnitude of the 

values in the cost models. The distribution of values in the initial input solutions like 

random, cheapest and greatest difference models also affects the values of initial control 

parameter based on the hot-swap acceptance percentage of in the initial step (see 

Section 7 .1.1 ). 

The cooling rate was found to be an important annealing parameter in the annealing 

schedule. The cooling rate controls the cost minimization through reducing the initial 

control parameter and also determining the number of cooling steps. At the very fast 

cooling rate (CR) = (0.2), the initial control parameter reduced by 80 percent in every 

step and the algorithm reached the stopping criterion in a few cooling steps (fewer than 

70 steps). However, in the case of the very slow cooling rate (CR) = (0.98), the initial 

control parameter reduced at the rate of two percent in every step and allowed more 

than 450 control parameter steps before getting to the stopping criterion. 

In a MOLAA problem, the very fast cooling rate performed more efficiently than the 

very slow cooling rate at the higher value of swapping rate (SR)= (lOO*Vc). The very 

fast cooling rate reduced the initial control parameter very quickly and sharply 

decreased the number of hot-swaps acceptances in the second control parameter step. 

However, the high swapping rate enabled the algorithm with the very fast cooing rate to 

search for all spaces and minimized the cost function satisfactorily, even in a small 

number of control parameter steps. In contrast, at the very slow cooing rate, the initial 

control parameter decreased very slowly, allowing a large number of hot-swap 

acceptances for several cooing steps. While the algorithm at the very slow cooling rate 

took more than 450 control parameter steps with huge number of acceptances of the hot­

swaps and cold-swaps, the cost function did not improve much because of the cost 

minimization achieved by the cold-swaps was offset by the acceptance of the hot-swap. 

The choice of swapping rate (SR) is the key to the Simulated Annealing as it mainly 

determines the improvement in the cost function along with the cooling rate (CR). In the 

physical annealing process, the configuration should reach thermal equilibrium for each 

temperature step, otherwise the solids would not get into the ground state (van 

Laarhoven and Aarts, 1987). For a combinatorial problem, Sundermann (1995) 

suggested using a number of iterations at which the cost function does not get changed. 
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However, the appropriate swapping rate in solving a real land use allocation problem 

has not been suggested. A higher number of iterations generally improves the cost 

function (McDonnell et al., 2002). However, this study found that the rate of 

improvement in the cost function decreased with the higher the number of swaps, and 

after a certain number of iterations (swapping rate), the algorithm did not improve the 

cost function significantly. Nevertheless, the higher number of swaps increases the 

computation time. With a higher swapping rate like (SR)= (100* Ve) together with the 

very slow cooling rate (CR,) = (0.98), the computation time increased markedly 

depending upon the size of the problem. 

The algorithm successfully solved a MOLAA problem through applying the initial input 

models based on the ordinal, continuous and fuzzy cost models. The solutions by the 

algorithm to different cost models were not comparable in terms of the cost function 

minimization, having a different range, magnitude and distribution of the cost suitability 

values in these cost models. However, the cost model of the initial solution certainly 

affected the spatial pattern of the final solution due to inherent differences in 

representing the suitability of a land unit to a land use among these cost models. It was 

found that the spatial compactness was more improved in the fuzzy cost model for the 

large grid. The higher number of discrete values representing the land use suitability in 

the fuzzy model, the more spatially compact the land use allocations produced by the 

algorithm. The ordinal model had the least discrete values for representing the land use 

suitability and therefore the spatial compactness was not improved in this cost model 

compared to the continuous and fuzzy cost models for the large grid. 

The algorithm minimizes the cost function to its minimum in all initial input solutions 

of all cost models as determined by the annealing schedule. Although the random initial 

input solution has the highest value of initial cost function with massively scattered land 

use allocation (the highest number of patches), the algorithm produces a solution very 

close to the cheapest and greatest difference initial input solutions in terms of the cost 

function and spatial compactness for the same cost model. The total number of patches 

reduced and enhanced the spatial compactness, as the optimisation progressed 

minimizing the initial cost function by allocating the land use with the lowest suitability 

value for each land unit. However, the same cost functions could not produce the same 

spatial compactness because of more than one land unit having the same cost value for a 

land use. The allocation of a land use to a land unit with the same cost value could not 
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affect the cost function, but the location of the selected land unit could affect the spatial 

compactness. Even the higher cost function often produced more spatially compact land 

use allocation by allocating the same land use to the adjoining land units with the higher 

suitability value. This was seen in the small grid problem where the algorithm generated 

an optimum solution with the minimum cost function but decreased the spatial 

compactness by using the greatest difference initial input solution (see section 7.1.4). 

Applying the compactness function in the algorithm, the higher factor (reward) value 

enhances the spatial compactness by reducing the total number of patches. An increase 

in the cost function occurred because of allocating adjacent land units having the same 

land uses, despite their higher costs. Among the different cost models with different 

ranges and magnitudes of cost values, the same compactness factor did not produce the 

same level of compactness. The decision maker and stakeholder may apply different 

compactness factors to arrive at a satisfactory compromise of the cost function and 

spatial compactness in a MO LAA problem. 

7.3 Conclusion 

The Simulated Annealing algorithm was applied to solving a MOLAA problem. An 

appropriate annealing schedule and input requirement were also searched for the 

algorithm. By applying this algorithm to three different grid sizes (small, medium and 

large) MOLAA problems at different cooling functions, swapping rates, initial input 

solutions and cost models, this study has drawn the following conclusions. 

1. Among the three cooling functions used in the Simulated Annealing, the cooling 

function in Mode 1 produced the highest improvement in the cost function in all 

annealing schedules. Besides the superior cost function, the annealing schedule 

based on Mode 1 was found to be simple to understand and easy to implement. 

Therefore, this cooling function was chosen for investigating an appropriate 

number of swaps (SR) and the initial control parameter (T1) for a MOLAA 

problem. 

2. The study evaluated the influence of the three values of initial control parameters 

as determined by 50, 80 and 98 percent acceptance of hot-swaps at the first 

cooling step for cost function minimization. For the same value of cooling rates 

and swapping rates, the different values of initial control parameter did not 

142 



produce any significant difference in the cost function minimization. This implies 

that the higher value of initial control parameter is not necessary for improving 

the cost function in solving a MOLAA problem, as in the metal crystallization by 

the analogous annealing process. 

3. Among the four cooling rates (CR) = (0.2, 0.5, 0.8 and 0.98), the very slow 

cooling rate (CR)= (0.98) produced the highest improvement in the (mean) cost 

function by cooling at the rate of two percent per step of the initial control 

parameter. Although the very fast cooling rate (CR)= (0.2) produced the smallest 

improvement in the cost function by cooling the initial control parameter at the 

rate of 80 percent every step, the algorithm was more efficient in terms of the 

computation time at a very fast cooling rate producing a slightly higher cost 

function than the very slow cooling rate. 

4. The swapping rate exerted the greatest influence on improving the cost function of 

all the annealing parameters in the Simulated Annealing algorithm. Among the 

four swapping rates (SR) = (l*Ve, lO*Ve, 50*Ve and lOO*Ve), the higher 

swapping rate (SR) = (>50* Ve) produced the maximum improvement in the cost 

function in a MO LAA problem. At the higher number of swaps (SR) = (>50* Ve), 

the algorithm searched the maximum combination of the decision variables (land 

uses and land units) in order to improve the cost function whereas the lower 

swapping rates (SR)= (<50*Ve) might not be adequate to search for all the land 

units and therefore, the algorithm was terminated even at the higher cost function. 

5. For the medium grid MOLAA problem, the cheapest or greatest difference initial 

input solution was found to be more appropriate than the random input solution. 

However, in the case of the large grid, the algorithm improved cost function more 

by using the random initial solution in the continuous and fuzzy models. 

6. The algorithm produced an optimum solution for the small grid with the annealing 

schedule (CR, T1, SR) = (0.2, high, lOO*Ve) using the greatest difference initial 

input solution. For the medium and large grid MOLAA problems, the algorithm 

with the annealing schedule (CR, T1, SR) = (0.98, high, 300*Ve) delivered a 

solution with a near-optimum cost function. However, the swapping rate (SR) = 
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(300* Ve) markedly increased the computation time to more than 60 hours for 

generating the near-optimum solution for the large grid MO LAA problem. 

7. The highest spatial compactness was found in the fuzzy model followed by the 

continuous model, in the large grid MOLAA problem. However, the land use 

allocation was more compact in the continuous model than in the fuzzy model in 

the medium grid MOLAA problem. The spatial distribution and the variability 

(number) in the cost values in the input cost suitability model produced a different 

measure of spatial compactness in these models. 

8. It was also found that the computation time increased with the higher swapping 

rate and cooling rates in the annealing schedule. The run time markedly increased 

from the medium grid to the large grid size MOLAA problem. Among the three 

cost suitability models, the algorithm required the longest run time for delivering 

a solution in the fuzzy models for both grid sizes. 

9. By assessing the performance of the Simulated Annealing in terms of the quality 

of the solution (cost function and spatial compactness) and the run time, an 

appropriate annealing schedule with (CR, T1, SR)= (0.2, high, lOO*Ve) was found 

appropriate for applying the Simulated Annealing to medium and large grid 

MOLAA problems. The run time was reduced to about one minute in this 

annealing schedule, from about two hours for generating a near-optimal solution 

in the medium grid using the appropriate annealing schedule. In the large grid 

MOLAA problem, the appropriate annealing schedule (CR, T1, SR) = (0.2, high, 

100* Ve) produced a cost function close to a near-optimal solution much more 

efficiently than the annealing schedule (CR, T1, SR)= (0.98, high, lOO*Ve) with 

slightly higher the cost function than in the latter annealing schedule. 

10. Among the three models, the highest improvement in the cost function was found 

in the fuzzy models, brought about by reducing the cost function by about 27 

percent less than the initial cost in the random input solution in the medium grid 

MOLAA problem. In the large grid MOLAA problem, the algorithm improved 

the cost function by about 36 percent less than the initial cost in the random input 

solution in the fuzzy model. The solution was found to be about 25 percent more 

spatially compact in the fuzzy model than in the ordinal model in the large grid. 
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Although the same annealing schedule (CJ?, T1, SR)= (0.2, high, lOO*Vc) delivered 

a solution about an hour quicker in the ordinal model than in the fuzzy model, the 

quality of the solution in terms of improvement in the cost function and the spatial 

compactness in the latter model were better than in the former model. Unlike in 

the medium grid, the algorithm produced a slightly better solution using the 

random input solution than in the cheapest or greatest difference input solution. 

Hence, the random initial solution of a fuzzy model was found appropriate in 

solving a MOLAA problem applying Simulated Annealing. 

11. In general, higher values of the compactness factor better enhanced the spatial 

compactness and the value should be determined from the data range and values 

in the input cost suitability models. 

7.4 Summary 

A detailed application of the Simulated Annealing algorithm in solving a MOLAA 

problem was illustrated by applying the algorithm to the hypothetical MOLAA 

problem. The MOLAA problem was formulated as a combinatorial optimisation 

problem and subjected to optimisation through cost function minimization. A summary 

of the findings in relation to the influence of the different parameters, cost model and 

initial input solution is given in Table 7.18. 

The algorithm with (CJ?, T1, SR)= (0.2, low, 100* Ve) can produce a global solution to the 

small grid (10 by 10 cells) MOLAA problem. In the case of the medium and large grids, 

the algorithm with appropriate annealing schedule (CJ?, T1, SR)= (0.2, high, lOO*Vc) 

could deliver a solution close to the near-optimal solution in a very quick time. The 

algorithm performed better using fuzzy cost model and the random initial input solution 

in the large grid whereas in the medium grid, the cheapest and greatest difference initial 

solution gave better result. 

Chapter 8, the next chapter, will present the results of applying Tabu Search to the same 

hypothetical MOLAA problem. In Chapter 9, the MOLA module, Simulated Annealing 

and Tabu Search will be compared to assess their performance in solving a MOLAA 

problem. 
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Table 7.18 A summary of the parameters, their descriptions and hypothesis 

Parameters 
Comment on 

Findings 
null Hypothesis 

The algorithm with the cooling function Mode 1 cooled 
Cooling 

Rejected 
the initial control parameter until the cold-swaps became 

Function zero and thus, this mode produced better improvement 
in the cost functions than Modes 2 and 3. 
Although there was different in acceptance of hot-swaps 

Initial Control 
at three values of initial control parameter, the 

Parameter 
Accepted improvement in the cost function was not significantly 

affected using the low, medium and high values of 
initial control parameter. 
With the slower cooling rate, the number of iteration 

Cooling rate Rejected 
steps and computation time increased. Hence, the 
minimization of cost function was significantly different 
between the very fast and very slow cooling rates. 
The swapping rate influenced the cost minimization by 
determining the number of cold-swaps and hot-swaps. 

Swapping rate Rejected 
At the higher swapping rates (SR)=(=> I 00* Ve), the 
algorithm produced more improvement in the cost 
function than at the lower swapping rates (SR) = 
(=>SO* Ve). 
The compactness factor allowed acceptance of move 

Compactness 
Rejected 

that increased the spatial compactness depending upon 
function the cost model. The higher values of compactness factor 

produced better spatial compactness in all cost models. 
The algorithm produced more improvement in the cost 

Initial input 
function in the cheapest and greatest difference initial 

solution 
Rejected input model in the medium grid whereas in the large 

grid, the random input model had the highest 
improvement in the cost function. 
The algorithm produced more spatial compact land use 

Cost model Rejected allocation using fuzzy cost model than in other models 
in the large grid. 
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Chapter 8 

RES UL TS AND DISCUSSION Ill - APPL YING TABU 
SEARCH TO THE HYPOTHETICAL MOLAA PROBLEM 

This chapter presents the results of applying the Tabu Search algorithm explained in 

Chapter 3 to the hypothetical MOLAA problem. The algorithm was applied in static and 

dynamic search strategies, three neighbourhood sizes, four Tabu lengths and four 

swapping rates. The performance of the algorithm in solving a MOLAA problem was 

assessed by improvement in the cost function, run time and spatial compactness. Table 

8.1 presents a summary of these parameters, their brief description and null hypothesis 

addressing their influence on the cost function or spatial compactness. 

Table 8.1 A summary of the parameters, their descriptions and hypothesis 

Parameters Brief description Null Hypothesis 
Static and dynamic modes - it The minimization of the cost 

Search Strategy 
determines the swapping rates per function does not differ 
iteration step. significantly between static and 

dynamic search modes. 
Randomly selected 1, 4 and 8 The improvement in the cost 

Neighbourhood neighbours - it affects the selection of function does not differ 
size the best land unit for swapping. significantly among different 

values of neighbourhood size. 
Specifies the size of Tahu list - it affects The minimization of the cost 

Tahu length 
the algorithm by restricting swapping of function does not differ 
land use in the previous moves. significantly among the Tahu 

lengths. 
Total number ofland use exchange The minimization of the cost 
allowed between two land units in each function does not differ 

Swapping rate step - it affects the cost minimization by significantly among the 
controlling the number of cold-swaps swapping rates. 
and hot-swaps. 
A function that takes into account of the The spatial compactness does 

Compactness 
spatial compactness at every swapping - not differ significantly among 
it affects the compactness by rewarding the different values of 

function 
a move that increases the spatial compactness factor. 
compactness. 
Initial solutions generated by random, The minimization of the cost 

Initial input 
cheapest and greatest difference function does not differ 

solution 
methods - the initial solution may significantly among three initial 
influence the output and performance of input solutions. 
the algorithm. 
Suitability models derived from the The spatial compactness does 
criteria maps using ordinal, continuous not differ significantly among 

Cost models and fuzzy-WLC methods - the models three cost models. 
may influence on the output and 
performance of the algorithm. 
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8.1 Results 

8.1. 1 Influence of static and dynamic modes on cost function 
minimization 

Tabu Search was applied in static and dynamic modes (discussed in Chapter 5) to the 

MOLAA problem in the medium grid MOLAA problem. Table 8.2 presents the mean 

cost functions at four Tabu lengths (TL) and four swapping rates (SR) in the both the 

modes. Four Tabu lengths (TL)= (962, 1443, 1924 and 2405) were used, as determined 

by the 10, 15, 20 and 25 percents of valid cells (9619) in the medium grid. The mean 

cost function was found to be lower in the dynamic mode than in the static mode for 13 

out of 16 parameter settings. However, these differences in the mean cost function were 

not found significant by the t-test with two-sample assuming unequal variance at 95 

percent confidence interval. Hence, the null hypothesis regarding the search strategy 

was accepted, as there was no significant difference in minimization of the cost function 

between these two modes. 

Table 8.2 Mean cost function and mean difference by Tabu Search in static and 
dynamic modes for medium grid (random input model) of ordinal cost model 

Mean cost function = 4153000+ 

No of swaps .. -~S'~!Jun~j-~~~-Tal?_~ le~gth =:'...2~~-~·-·£ost funct~~ at_ Tahu_~-~~h =_1_443·--
e st p Static Dynamic Mean Static Dynamic Mean 

p r e Mode Mode Difference Mode Mode Difference 
9619 2377 1876 501 2385 1851 534 
96190 967 956 11 1093 938 155 

480950 854 830 24 871 816 55 
961900 816 805 11 800 805 5 

No of swaps 
Cost function at Tahu length= 1924 Cost function at Tahu length= 2405 

Static Dynamic Mean Static Dynamic Mean per step 
Mode Mode Difference Mode Mode Difference 

9619 2220 1872 348 2194 1979 215 
96190 1093 934 159 1009 939 70 

480950 815 820 - 5 849 819 30 
961900 823 821 -2 804 811 - 11 

= 
Note: The mean cost function did not differ significantly between the static and 

dynamic modes. 

Although the mean cost functions were not significantly different between the static and 

dynamic modes, the computation time was found to be appreciably higher for the 

dynamic mode. Figure 8.1 illustrates the run time differences in the dynamic and static 

modes with Tabu lengths (TL)= (1924 and 2405) at three swapping rates (SR)= (lO*Vc, 

50*Vc and lOO*Vc). The time difference was found to be increased with the higher 

swapping rates and Tabu lengths. Based on the improvement in the cost function and 
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run time, the algorithm in static mode was found to be more efficient than the dynamic 

mode. This result was also found valid in the large grid MOLAA problem. Hence, the 

algorithm in static mode was chosen for solving a MOLAA problem. 
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Figure 8.1 Run time for the static and dynamic modes at two Tabu lengths for the 
medium gird 

8. 1.2 Influence of neighbourhood sizes on cost function 
minimization 

Three neighbourhood sizes (Ns) = (1, 4 and 8) were used in the Tabu Search algorithm 

in order to find an appropriate neighbourhood size for generating a new solution. The 

mean cost functions at these neighbourhood sizes are given in the Table 8.3 for four 

swapping rates (SR)= (1 *Ve, lO*Ve, 50*Ve and lOO*Ve) and four Tabu lengths (h) = 

(962, 1443, 1924, and 2405). Among 16 combinations of Tabu length and swapping 

rates, the cost function generally improved with the higher values of neighbourhood 

sizes from one to eight. The t-test with two-sample assuming unequal variance found 

the mean cost functions at the neighbourhood size (Ns) = ( 1) were significantly different 

from the mean at the higher neighbourhood sizes for all the Tabu length at the swapping 

rates (SR) = (1 *Ve) and (lO*Ve). However, the means were not found significantly 

different at the higher swapping rates (SR)= (=>50*Ve) among all neighbourhood sizes. 

The null hypothesis about the influence of the neighbourhood sizes on the cost function 

was accepted only for the higher swapping rates (SR) = (=>50*Ve). The statistical 

difference of the mean cost function at the neighbourhood size (Ns) = ( 1) is represented 

by the neighbourhood sizes in the superscript in the table. 
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Table 8.4 presents the cost difference and run time difference between the 

neighbourhood size (Ns) = (1) and the higher neighbourhood sizes (Ns) = ( 4 and 8). The 

cost differences were higher at the lowest swapping rates (SR) = (1 *Ve, lO*Vc) and 

decreased with the increase in the swapping rates. However, the run time for delivering 

a solution by the algorithm increased with the higher values of neighbourhood sizes. 

Using the higher number of neighbourhood sizes (Ns) = (4 and 8) in the algorithm, an 

additional time was required for random selection of 4 or 8 cells and comparing the 

costs for selecting the cheapest cell to swap the land use. Therefore the neighbourhood 

size (Ns) = (1) was found more efficient than the higher neighbourhood sizes and it was 

chosen for further investigation. This finding rejected the of null hypothesis regarding 

the influenction of neighbourhood sizes on improvement in the cost function. 

Table 8.3 Mean cost function at different neighbourhood size for medium grid 
(random input model) of ordinal cost model in static mode 

Cost function = 4153000+ 

per step Ns= one Ns= four Ns= eight Ns= one Ns= four Ns= eight 
9619 24254'8 1292 1068 23724•8 1318 1061 
96190 10064'8 845 831 10164'8 850 808 

480950 846 817 796 859 802 805 
961900 810 801 769 797 786 799 

No of swaps Cost function at Tahu length= 1924 Cost function at Tahu length= 2405 
per step Ns= one Ns= four Ns =eight Ns= one Ns= four Ns =eight 

9619 20884'8 1516 1216 22124'8 1214 1112 
96190 11694'8 898 918 9774,8 838 836 

480950 819 786 822 829 781 815 
961900 827 794 787 801 788 796 

Note: The mean cost function decreased with the increase in the neighbourhood size. 

Table 8.4 Comparing the mean cost functions at neighbourhood (Ns) = (1) and 
the higher neighbourhood sizes for medium grid 

= 962 = 1443 
No of (N - 1) (N - 4) (N ) ( ( ( ) swaps per s- - s- s= 1 -(Ns=8) Ns= 1)-(Ns=4) N8 = 1)- N8 =8 
~ 0 ~ 0 ~ 0 ~ 0 ~ 

differnce difference differnce difference diffemce difference differnce difference 
9619 
96190 

480950 
961900 

No of 
swaps 

per step 

9619 
96190 
80950 

961900 

1133 <0:01 1357 0:01 1054 0:02 1311 0:05 
161 <0:01 175 0:01 166 0:03 208 0:07 
44 <0:01 50 0:01 81 0:05 78 0:07 
24 0:01 41 0:02 11 0:06 - 2 0:11 

(Ns=l)-(Ns=4) (Ns=l)-(Ns=8) (Ns=l)-(Ns=4) (Ns=1)-(Ns=8) 
CF Time CF Time CF Time CF Time 

differnce difference differnce difference diffemce difference differnce difference 
572 0:09 872 0:25 998 0:19 1100 0:47 
271 0:14 251 0:32 139 0:28 141 1:06 
33 0:15 -3 0:43 48 0:28 14 1:28 
33 0:23 40 0:50 13 1:22 5 1 :42 

Note: The computation time increased with the higher values of neighbourhood sizes. 
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8.1.3 Influence of Tabu length on cost function minimization 

Eight Tabu lengths (h) as determined by 0.5, 1, 2.5, 5, 10, 15, 20 and 25 percentages of 

the valid cells (Ve) = (9619) in the medium grid were used in the algorithm in order to 

compare their influence on cost function minimization. Figure 8.2 displays the mean 

cost functions at Tabu lengths (TL) = (48, 96, 241, 481, 962, 1443, 1924 and 2405) for 

four swapping rates (SR) = (1 *Ve, lO*Ve, 50*Ve and lOO*Ve). The t-test with two­

samples assuming unequal variances did not find a significant difference among these 

mean cost functions for the same parameter settings at 95 percent confidence interval. It 

means that the different values of Tabu length do not produce a significant difference in 

the cost function. Hence the null hypothesis about Tabu length was accepted. 
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Figure 8.2 Mean cost functions at eight different Tabu lengths for medium grid 
(random input solution) of ordinal cost model in static mode 

8.1.4 Influence of swapping rate on cost function minimization 

Four swapping rates (SR) = (1 *Ve), (lO*Ve), (50*Ve) and (lOO*Ve) as determined by 

multiples of one, ten, fifty and hundreds of the valid cells in the grid (Ve) per iteration 

step, respectively, were used in Tabu Search. The influences of these swapping rates 

were assessed by minimization of the cost function (Figure 8.3) in the static mode for 

the medium grid. 

The lowest swapping rate (SR)= (1 *Ve) and the highest swapping rate (SR) = (lOO*Ve) 

produced minimum and maximum improvements respectively, in the cost function for 

all Tabu lengths in the medium grid (random input solution) of the ordinal cost model. 

The mean cost functions of these solutions were found to be significantly different at 95 
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percent confidence interval by a statistical test. Hence, the null hypothesis was rejected. 

However, the algorithm at the higher swapping rates (SR) = (>=50*Ve) produced 

solutions with no significant difference in their mean cost functions. 
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Figure 8.3 Mean cost function at different swapping rates for medium grid 
(random input model) of ordinal cost model in static mode 

At the specified swapping rate, the number of cold-swap and hot-swap acceptances 

influenced the cost function minimization. Figures 8.4 and 8.5 show the accepted 

number of cold-swaps and hot-swaps at each step for four different swapping rates. The 

number of potential hot-swaps decreased at each step and became null at the 20th steps 

for the swapping rates (SR) = (1 *Ve, IO* Ve and 50*Ve) and at the 21st steps for (SR) = 
(lOO*Ve). As long as the algorithm accepted the hot-swaps, the higher numbers of cold­

swaps were accepted. The number of cold-swaps declined sharply after the hot-swaps 

became zero (Figure 8.5). The effects of both swaps on cost function minimization are 

shown in Figure 8.6. After the initial step, there was an increase in the cost function at 

the swapping rates (SR) = (1 *Ve, 50*Ve and lOO*Ve) due to the acceptance of higher 

number of hot-swaps than the cold-swaps. At the swapping rate (SR) = (1 *Ve and 

lO*Ve), the cost function decreased markedly after there were no hot-swaps to reverse 

the cost minimization by the cold-swaps. 
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At the specified swapping rate, the number of cold-swap and hot-swap acceptances 

influenced the cost function minimization. Figures 8.4 and 8.5 show the accepted 

number of cold-swaps and hot-swaps at each step for four different swapping rates. The 

number of potential hot-swaps decreased at each step and became null at the 20th steps 

for the swapping rates (SR) = (1 *Ve, IO* Ve and 50*Ve) and at the 21st steps for (SR) = 
(lOO*Ve). As long as the algorithm accepted the hot-swaps, the higher numbers of cold­

swaps were accepted. The number of cold-swaps declined sharply after the hot-swaps 

became zero (Figure 8.5). The effects of both swaps on cost function minimization are 

shown in Figure 8.6. After the initial step, there was an increase in the cost function at 

the swapping rates (SR) = (1 *Ve, 50*Ve and lOO*Ve) due to the acceptance of higher 

number of hot-swaps than the cold-swaps. At the swapping rate (SR) = (1 *Ve and 

lO*Ve), the cost function decreased markedly after there were no hot-swaps to reverse 

the cost minimization by the cold-swaps. 
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8. 1.5 Optimum cost function for different grid sizes and cost models 

Tabu Search was applied to the random and greatest difference input models to obtain 

near-optimal solutions for all grid sizes of the MO LAA problem. Tabu lengths did not 

influence the cost function minimization but the higher values of Tabu length increases 

the computation time for the algorithm (see section 8.1.3). Hence, the lowest value of 

Tabu lengths (TL) = (10) was used for all grids. The higher swapping rate has the 

highest influence on the cost function minimization (see section 8.1.4). However, the 

algorithm with the swapping rate (SR) = (500*Vc) did not improve the cost function 

more significantly than the swapping rate (SR) = (300* Ve). Hence, the cost functions at 

the latter swapping rate were taken to be the closest to the optimum for the medium and 

large grid MO LAA problems. Tables 8.5, 8.6 and 8. 7 provide the parameters used, run 

time, cost functions and spatial compactness (number of patches) for random and 

greatest difference initial input solutions for all three grids of ordinal, continuous and 

fuzzy cost models, respectively. 

In the small grid, the cost functions did not improve more than the values in the table in 

the greatest difference initial input solution for all cost models and were taken to be 

optimum solution. The algorithm could not reach to the global cost function in the 

medium grid and large grids. However, the near-optimal solution in the greatest 

difference initial input solution had a lower cost function than in the random initial 

solution for all the cost models in the medium grid. In the large grid, the algorithm 

produced more improvement in the cost function for the random initial solution than in 

the greatest difference initial solution in the continuous and fuzzy cost models. The 

maximum improvement in the cost function was found in the fuzzy cost models in both 

initial input solutions for all the grid sizes. 

The algorithm generated the solution with the lowest number of patches in the small and 

medium grids using the continuous cost models. In the case of the large grid, the fuzzy 

cost model gave the highest spatial compactness with the lowest number of patches 

among all cost models. The near-optimum land use allocation to the small, medium and 

large MOLAA problems are shown in Figures 8.7 for the random initial input solution 

of the ordinal cost model. 
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Table 8.5 Cost functions closest to the global cost functions for all three grids of 
ordinal cost model 

Random 

S. Parameters Run time Near optimum Cost function 
N. Grid size TL SR h:m Cost function Reduction% 

1 Small 10 10,000 <0:01 40940 12.917 
2 Medium IO 2,885,700 0:06 4153840 21.499 
3 Large 10 55,835,400 4:25 68285913 26.988 

Greatest difference input grids 
1 Small 10 10,000 <0:01 40793* 
2 Medium 10 2,885,700 0:06 4153500 

~E,Sm~ 10 551 835,40~ • 5:22 68~85913 

Note: The symbol* indicates the optimum cost function. 

9.939 
8.952 
10.932 

Spatial 
compactness 

10 
374 
4146 

14 
374 

4102 

Table 8.6 Cost functions closest to the global cost functions for all three grids of 
continuous cost model 

·------------~_, ___ _Random input grj_<!,s ___ ~--·~---·-----~ 
S. Parameters Run time Near optimum Cost function Spatial 
N Grid size · TL SR h:m Cost function Reduction% compactness 

1 Small 10 10,000 <0:01 75850* 15.508 9 
2 Medium 10 2,885,700 0:06 7512972 16.219 283 
3 Large 10 55,835,400 25:01 129703154 21.898 3412 

Greatest difference input grids 
1 Small 10 10,000 <0:01 75850* 5.318 
2 Medium 10 2,885,700 0:07 7512284 8.098 
3 L~r&~~-~-_J_Q __ 55:8352.i~Q~-1~1,9 1297029_53 ____ 19.030 

Note: The symbol* indicates the optimum cost function. 

10 
274 

3417 

Table 8.7 Cost functions closest to the global cost functions for all three grids of 
fuzzy cost model 

Random 
S. Parameters Run time Near optimum Cost function 
N. Grid size 

TL SR h:m Cost function Reduction% 

1 Small 10 10,000 <0:01 249764 19.291 
2 Medium 10 2,885,700 0:08 29616156 27.492 
3 Large 10 55,835,400 16:30 451320822 36.450 

Greatest difference input grids 
1 Small 10 10,000 <0:01 248292* 5.621 
2 Medium 10 2,885,700 0:09 29612597 18.969 

__2_L~rg_~------!2~-~3 5,_~00_10:3~--~J 13~_15_3_3 __ 23 .036 
Note: The symbol* indicates the optimum cost function. 
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Figure 8.7 Near-optimal land use allocation in the small, medium and large 
MOLAA problems by Tabu Search using random initial input solution of the 

ordinal cost suitability model 
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8.1.6 Assessing performance of Tabu Search in solving the MOLAA 
problem 

8.1.6.1 Analysing the spatial compactness without compactness 
function 

Table 8.8 presents the number of patches with corresponding cost functions for the large 

grid, applying the algorithm at Tabu length (Tr) = (25) and four swapping rates in the 

random initial input solution of all three cost models. The lower number of patches 

implies a higher level of spatial compactness. The land use allocation in the fuzzy cost 

model was found to be more spatially compact than in the continuous and ordinal cost 

models similar to the Simulated Annealing (see Section 7.1.5.1 in Chapter 7). In general 

the total number of patches decreased with an improvement in the cost function in all 

the cost models. Nevertheless, for a small difference in the cost function, the spatial 

compactness may be more enhanced even at the higher cost function. The Tabu Search 

produced similar spatial compactness as the Simulated Annealing using different cost 

models in the medium grid (see Section 7.1.5.1 in Chapter 7). 

Table 8.8 Number of patches (Np) at different parameters for the random input 
model of medium grids 

Swapping 
rate 

186118 
1861180 

• 9305900 
18611800 

-~---m»»»>;->m>; 

Total cost function for ordinal model= 68283000+ 
Total cost function for continuous model= 129703000+ 

Total cost function for model= 451319000+ 
Cost model 

~"=w,~,~-----·-,..,.__ __ ~,--~~--~,~-~-~-~~- ·--~-~ 

Ordinal Continuous Fuzzy 
Cost No. of Cost No. of Cost No.of 

function eatches function eatches function eatches 
5486 4397 18062 3593 33220 3229 
3651 4204 10038 3476 11859 3150 
2936 4088 3767 3447 5000 3142 
3742 4132 1940 3421 3717 3144 

,.,.,.,,..,...,_,,,.,,_,,,,,,,_...,.,_,~..,,,,--,,.,,.~-~-· ·~----~-""""---·---· -~~-· ---·"'"" 

Note: The spatial compactness was generally enhanced with the improvement in the 
cost function and the algorithm produced more spatially compact land use 
allocation using the fuzzy cost model. 

8.1.6.2 Computation time 

In the Tabu Search, computational time was mainly determined by the swapping rate, 

the search strategy (whether it is static or dynamic), and the size of the problem. 

However, at the same swapping rate, the run time was also influenced by Tabu length. 

The average computation times at four Tabu lengths and four swapping rates are given 

in Table 8.9, using the random initial input solution of all the cost models in the 

medium grid. The computation time less than the nearest minute is indicated by the less 
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than sign ( <). The computation time increased with the higher value of Tabu length for 

the same swapping rate. The run time was the highest in the fuzzy cost model followed 

by the continuous cost model. 

Table 8.9 Average run time for the random input model of the medium grid size 
for all cost models 

Swapping TL=48 TL= 96 
rate Ordinal Continuous Fuzzy Ordinal Continuous Fuzzy 

9619 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 
96190 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 

480950 <0:02 <0:02 0:02 <0:02 <0:03 <0:03 
961900 <0:03 0:03 0:03 0:03 0:04 0:04 

Swapping TL= 241 h=481 
rate Ordinal Continuous Fuzzy Ordinal Continuous Fuzzy 

9619 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 
96190 <0:01 <0:01 <0:01 0:01 <0:02 <0:02 

480950 <0:03 <0:04 <0:04 0:04 0:05 0:06 
961900 0:05 0:06 0:06 0:08 0:09 0:10 

The run time increased markedly in the large size MOLAA problem. It increased with 

the higher values of the Tabu length and swapping rate as in the medium grid. For 

instance, this is shown in Figure 8.8, applying the algorithm with Tabu lengths (TL) = 
(931, 1862, 4653, 9306) at three swapping rates (SR)= (9619, 96190 and 480950) in the 

large grid MOLAA problem. The algorithm with parameters (TL, SR) = (4653, 480950) 

did not deliver a solution in more than 48 hours and was deliberately terminated. 

Although the run times varied for the same parameter setting, input solution and cost 

model, Tabu Search generated solutions in the lowest time in the ordinal cost model in 

all input solutions for the same parameters. 
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Figure 8.8 Computation time for four Tabu lengths at different swapping rates for 
the large grid in ordinal cost model 
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8. 1. 7 Appropriate parameters for Tabu Search 

The algorithm delivered a near-optimum solution for a small grid (10 by 10 cells) 

problem in less than a minute using a Pentium IV PC. In the case of the medium grid 

(100 by 100 cells) problem, the algorithm delivered a near-optimal solution in less than 

ten minutes for all the cost models. However, the algorithm with parameters (Ti, SR)= 

(10, 50* Ve) produced a solution similar to the near-optimal solution in less than two 

minutes computation time in the medium grid. 

In the large grid MO LAA problem, the Tabu length (Tr) = (10) and the highest 

swapping rate (SR) = (300* Ve) that is, 55,835,400 were used in the algorithm to 

generate the near-optimum solution in the large grid. It took more than four hours to 

generate a solution using the random initial solution in the ordinal cost model (see 

Section 8.1.5). However, the algorithm at the swapping rates (SR) = (50* Ve) and (SR) = 

(100* Ve) could produce a solution close to the near-optimal solution in much less time. 

Hence the Tabu lengths (Tr) = (10) at swapping rates (SR) = (50*Ve) and (SR) = 

(100* Ve) were used in the algorithm in solving a MO LAA problem in the random input 

model of the ordinal cost model in the large grid. The solutions were compared in the 

terms of the cost function, spatial compactness and run time with the near-optimal 

solution (Table 8.10). 

Table 8.10 Difference in cost functions, run time and compactness between two 
different swapping rates at different Tabu lengths in the large grid 

Parameters Cost function 
TL SR Average Change % Change 

• 10 50 1228 315 0.000461 
10 100 1108 195 0.000285 

Total cost function= 68285000+ 
Spatial compactness 
Average Change 

4127 - 19 
4134 - 12 

Run Time h:m 
Average 

1:33 
2:32 

Saving 
7:00 
5:59 

The mean values of cost function and the spatial compactness did not differ 

significantly between the solutions produced at these parameter settings. The small 

value of Tabu length (Tr) = (10) reduced the computation time to about two and half 

hours. However, the algorithm with the swapping rate (SR) = ( 50* Ve) delivered the 

solution about an hour quicker than at the swapping rate (SR)= (lOO*Ve). Hence the 

algorithm with parameters (Tr, SR) = (10, 50*Ve) was found to be appropriate for 

solving a MOLAA in the large grid problem. 
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8. 1.8 Applying compactness function in the algorithm 

The compactness function was applied using compactness factors (Fe) = (25, 50, 75, 

100 and 200) in the Tabu Search algorithm with appropriate parameters (Tr, SR)= (10, 

50* Ve). The cost function, run time and spatial compactness in terms of number of 

patches in eight neighbour rule are given for the medium and the large grids using 

random initial input solution of the ordinal cost model in Tables 8.11 and 8.12, 

respectively. The use of compactness factors (Fe) = (25, 50, 75, 100 and 200) in the 

Tabu Search algorithm increased the spatial compactness in both grids. 

Table 8.11 Spatial compactness after applying compactness function in the 
medium grids of ordinal cost model 

Total cost function= 4153000+ 
W,-W/ff~#M = OW~UIWN'/.<W/.-;0'//h---W-·----··-· --""""""-~W-ff/ff/hW#.=<--

Random Greatest Compactness -~--~--------·~·--------~~-------------------
Factor Cost Run No. Of Cost Run No. of 

function time, h:m patches function time, h:m patches 
0 853 <0:02 384 650 <0:02 376 

25 67559 0:02 100 65032 0:02 111 
50 121047 0:02 72 120624 0:02 78 
100 212745 0:02 65 220527 0:02 58 
200 331286 0:02 51 300305 0:02 66 

Table 8.12 Spatial compactness after applying compactness function in the 
large grids of ordinal cost model 

Total cost function= 68285000+ 
Random Greatest Compactness -----·-··---·-··------·-··-------· .. --······~--·-···-·-~·-··---~-~-·--

Factor Cost Run No. Of Cost Run No. of 
function time, h:m patches function time, h:m patches 

0 1309 1:33 4120 881 1:44 4126 
25 1309740 1 :03 918 1295163 1 :02 934 
50 2179927 1:16 300 2182540 1:21 688 
100 3269845 1 :46 565 3321778 1 :59 551 
200 4408792 4: 10 424 4565176 2:49 498 

8.1.9 Appropriate input model and cost model for Tabu Search 

Tabu Search algorithm with parameters (Tr, SR) = (10, 50*Ve) was applied to the 

MOLAA problem in the medium and large grid size, respectively. The algorithm was 

implemented in three initial input solutions of the ordinal, continuous and fuzzy cost 

models. The average cost functions, run time and spatial compactness are given for 

these input solutions and cost model in Table 8.13. Among the three initial input 

solutions, the cheapest and the greatest difference input solutions produced significant 

improvement in the cost function than the random input solution in the medium grid 

MOLAA problem for all the cost models. In the large grid, the algorithm minimized the 
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cost function more in the random initial input solution than in the cheapest and greatest 

difference initial input solutions in the continuous cost model and the mean cost 

functions were found to be significantly different at 95 percent confidence interval. In 

the fuzzy cost model, the minimization of the cost function did not differ significantly 

among the three initial input solutions whereas in the ordinal cost model, the mean cost 

function between the random and greatest difference initial input solutions were found 

to be significantly different at 95 percent confidence level. Regarding the null 

hypothesis about the initial input solutions, it was rejected in the medium grid and the 

continuous and ordinal cost models of the large grid. But there was not enough evidence 

to reject the hypothesis in the case of the fuzzy cost model oflarge grid. 

The algorithm did not produce consistent result on spatial compactness in the medium 

grid using different cost models (see Section 8.1.6.1 ). However, the spatial compactness 

was the highest in the fuzzy cost model for the MOLAA problem in the large grid. The 

mean values of number of patches in the solutions were found to be significantly 

different among the three cost models for both grid sizes. Thus these findings reject the 

null hypothesis about the influence of the cost models on spatial compactness. 

Table 8.13 Comparing the average cost functions, run time and spatial 
compactness for all the input models and cost models in the medium and large 

grid MOLAA problem 

Medium Grid Grid 

Cost model 
Initial Input Average Average Average Average Average 

solution cost Run time b f Average cost Run time number of num er o fi f 
function h:m t h unc ion h:m ratches pa c es 

Random 4153827 <0:02 377 68286228 1:33 4122 
Ordinal Cheapest 4153550 <0:02 377 68285883 1:27 4131 

Greatest 4153563 <0:02 383 68285937 1:36 4132 
Random 7512999 <0:02 277 129706610 7:19 3440 

Continuous Cheapest 7512351 0:01 280 129706995 7:51 3446 
Greatest 7512372 <0:02 279 129707693 6:39 3453 
Random 29616093 <0:02 299 451324501 3:39 3141 

Fuzzy Cheapest 29612639 <0:02 301 451324659 3:17 3144 
Greatest 29612686 <0:02 299 451324715 3:56 3141 

~,-, __ ,,,.,,,,,,."""'~--~=_,,-, ~~~"-~'~ 
,,.,._.,,., _______ ,,_,.,~= 
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8.2 Discussion 

Two search strategies with a static (fixed swapping rate) and dynamic (variable 

swapping rate) mode were applied in the Tabu Search algorithm. Despite the higher 

swapping rate in the dynamic mode, the cost function minimization in both modes did 

not differ significantly for the same swapping rate. In the dynamic mode, the algorithm 

is likely to have a higher swapping rate, as the swapping rate is randomly selected 

between the specified swapping rate and twice the specified swapping rate. For instance, 

if the specified swapping rate was 96,190, a swapping rate between 96,190 and 192,380 

would be chosen in the dynamic mode. The algorithm with dynamic mode requires 

more computation time than the algorithm with static mode, because of the additional 

time needed for random selection of the land units for higher numbers of swapping rates 

in each iteration in the dynamic mode than in the static mode. 

Searching for a new solution which reduces the cost function is vital to optimization, 

ultimately delivering a solution with minimum cost function. This study compared the 

influence of the three neighborhood sizes (Ns) = (1, 4 and 8) on improving the cost 

function, using the Tabu Search algorithm. The large neighborhood sizes (Ns) = ( 4 and 

8) significantly improved the cost function at the lower swapping rates (SR) = 

(=<lO*Vc) than the single neighbourhood that is (Ns) = (1). However, there were no 

significant differences in the mean cost function among these neighbourhood sizes at 

the higher swapping rates (SR) = (=>50* Ve). It implies that the algorithm at the large 

neighbourhood sizes (Ns) = ( 4 and 8) selected four or eight potential land units at each 

iteration and evaluated before selecting the best neighbourhood for swapping the land 

uses whereas only one land unit was selected in the single neighbourhood. Therefore, 

the algorithm at the higher neighbourhood sizes improve the cost function more at the 

lower swapping rates (SR)= (=<lO*Vc) than the algorithm with single neighbourhood. 

However, at the higher swapping rate, even the single neighbourhood size could search 

for all spaces and improve the cost function as more as the algorithm at the higher 

neighbourhood sizes. The algorithms with the higher neighbourhood sizes were not 

found efficient in terms of the computation time taken by the algorithm as compared to 

the algorithm with the single neighbourhood. The computation time increased with the 

higher neighborhood sizes, requiring an additional time for selection of the specified 

number of potential neighborhood solutions and their evaluation, in order to find the 

best neighborhood solution. 
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The main characteristic of Tabu Search is to restrict cycling or repetition of previous 

moves in search of an optimum solution, while avoiding entrapment in a local solution 

(Topaloglu, 2004). Different values of Tabu length were tested on their influences on 

cost function minimization in a MO LAA problem. The small and large values of Tabu 

lengths were found to have same impact on the cost function. For instance, the Tabu 

lengths (Tr) = (2405) and (Tr) = ( 48) exert no significant difference on the mean cost 

functions at 95 per confidence interval in the medium grid. However, the higher Tabu 

length markedly increased the computation time in order to maintain the larger list and 

also taking time to check whether a randomly selected land unit is in the list or not. 

In this research the location of the selected land unit was defined as 'Tabu' and 

registered in the Tabu list. The list prevented the reversal of the previsous moves by 

restricting the swapping of the land units already included in the list. However, it could 

not prevent the swapping of land uses between the land units at other locations with the 

same cost. The idea of using location attribute for defining 'Tabu' may be very 

consersative to a MOLAA problem. Other attributes like the land use and the cost value 

should be used in the Tabu list and their influence on the cost function minimization 

should be compared with the result using location attributes in the Tabu list. 

The swapping rate was found to be the most influential parameter in the algorithm by 

controlling the efficiency and effectiveness of the Tabu Search algorithm. The swapping 

rate determines the number of land use exchange between two land units per step. The 

swapping of land uses functionally contributes to the cost function minimization. The 

higher swapping rate contributed to the better improvement in the cost function. 

Hbwever, the swapping rates higher than (SR) = (50* Ve) did not improve the cost 

function significantly. The run time increased with increasing numbers of swapping 

rates. A compromise of run time and cost function was taken to decide on an 

appropriate swapping rate for the MOLAA problem. 

8.3 Conclusion 

The Tabu Search algorithm was successfully applied to solving a MOLAA problem. 

The appropriate parameter values and input requirements were also searched for this 

algorithm and the results were discussed. By applying the Tabu Search algorithm to 

three different grid sizes (small, medium and large) MOLAA problems at different 
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search strategies, neighbourhood sizes, Tabu lengths and swapping rates, this study has 

drawn the following conclusions. 

1. The Tabu Search algorithm was found to perform more efficiently in the static 

mode than in the dynamic mode. Although the algorithm in the dynamic mode 

executed more swaps per step than the static mode for the specified swapping rate, 

there was no significant difference in the mean cost functions for the solutions 

reached by the algorithm in these two modes. However, the higher number of 

swaps in the dynamic mode and also the selection of the number of swaps per step 

randomly for each step contributed to the higher computation for delivering a 

solution by the algorithm in the dynamic mode. 

2. Among the three neighbourhood sizes (Ns) = (1, 4 and 8) used in the Tabu Search, 

the algorithm with single neighbourhood size, that is, (Ns) = (1), produced an 

efficient solution to a MOLAA problem. The algorithm at the higher 

neighbourhood size (Ns) = ( 4 and 8) improved the cost function more at the lowest 

parameters (h, SR) = (962, 1 *Ve) than at the neighbourhood size (Ns) = (1 ). The 

difference in the mean cost function became smaller with increasing swapping 

rates but the computation time increased dramatically with the higher Tabu 

lengths and swapping rates. 

3. Different Tabu lengths were found to be indifferent to the cost function 

minimization in solving a MOLAA problem. However, the higher Tabu lengths 

contributed markedly to the rise in the computation time in delivering a solution 

by the Tabu search. Therefore, the algorithm at the lowest value of the Tabu 

length was found to be more efficient than using the higher Tahu lengths. 

4. In the Tabu Search algorithm, the key parameter was found to be the swapping 

rate for minimizing the cost function in solving a MOLAA problem. The cost 

function was found to be improved with the higher values of the swapping rates. 

However, the rate of improvement tends to decrease with the higher swapping 

rates and the swapping rate higher than (SR) = (>=50* Ve) may not improve the 

cost function significantly. 
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5. The Tabu Search algorithm was successfully applied to a MOLAA problem using 

the three initial input solutions generated by the random, cheapest and greatest 

difference methods. The Tabu Search algorithm improved the cost function more 

using the cheapest and greatest difference initial input solutions than the random 

input solution in the medium grid. However, in the large grid MOLAA problem, 

the algorithm minimized the cost function better using the random input solution 

than in the cheapest and greatest difference input solutions derived from the 

continuous and fuzzy models. 

6. An optimum or near-optimum solution to a MOLAA problem was generated by 

applying the Tabu Search algorithm with the parameters (TL, SR)= (10, 300*Vc), 

(10, 300*Vc) and (10, 300*Vc) for the small, medium and large grid MOLAA 

problems, respectively. The algorithm generated the optimum solution for the 

small grid using the greatest difference initial solution for all the data types. 

7. The computation time for the Tabu Search algorithm was found to be largely 

dependent on the Tabu length, swapping rate and the grid size of a MOLAA 

problem in the static mode. The computation time to deliver a solution by the 

Tabu Search algorithm rose with the higher values of the Tabu length, swapping 

rate and the grid sizes. Among the three models, the algorithm required the 

highest computation time in the fuzzy model, followed by the continuous model. 

The algorithm delivered the solution in the quickest time to a MOLAA problem in 

the ordinal model. In three initial input solutions, the algorithm took longest time 

in the greatest difference input solution and then, in the cheapest input solution 

and the least time was required for the random input solution. 

8. An appropriate parameter was suggested for the Tabu Search algorithm in solving 

a MOLAA problem. In the small grid, the algorithm with parameters (Tr, SR) = 

(10, lOO*Vc) could deliver an optimum solution in less than one minute 

computation time. The Tabu Search with parameters (TL, SR) = (10, 50* Ve) was 

found appropriate for the medium and large MO LAA problems. 

9. Based on the computational efficiency and the spatial compactness, the fuzzy 

cost model with any of three initial input solutions could be appropriate in solving 

a large grid MO LAA problem. In the case of the medium grid, the algorithm also 
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produced better solution in fuzzy models with highest improvement in the cost 

function. Therefore, the fuzzy cost model with the cheapest or greatest difference 

initial input solution could be the appropriate choice. 

8.4 Summary 

This chapter demonstrated the application of the Tabu Search algorithm in solving a 

MOLAA problem. A hypothetical MOLAA problem was successfully solved by 

applying the Tabu Search algorithm to three different initial solutions of the ordinal, 

continuous and fuzzy cost models. Table 8.14 presents a summary of the parameters, 

comments on the null hypothesis and the findings. 

Table 8.14 A summary of the parameters, their descriptions and hypothesis 

Parameters 
Comment on 

Findings 
null Hypothesis 

Although the dynamic strategy used the higher numbers of 
Search Strategy Accepted swaps, the cost function was not improved significantly 

between static and dynamic search strategies. 

The higher neighbourhood size significantly improved the 

Neighbourhood Conditionally 
cost function at the lower swapping rates but the mean 

size accepted 
cost functions did not differ significantly at the swapping 
rates (SR)= (=>SO* Ve). Hence, the null hypothesis was 
accepted at the higher swapping rates. 

Different Tahu length did not influence on the cost 
function minimization, but the higher Tahu length 

Tahu length Accepted increased the computation time. The cost functions at 
differ Tahu length were not significantly different among 
different Tahu length. 

The numbers of hot-swaps and cold-swaps acceptances 
were determined by the swapping rate. Thus the algorithm 

Swapping rate Rejected improved cost function more at the higher swapping rates 
(SR)= (=>SO*Vc) at the lower swapping rates (SR)= 
(=>lO*Vc). 

Compactness 
The higher values of compactness factor produced better 

Rejected spatial compactness in all cost models by accepting the 
function 

move that increased the spatial compactness. 

The algorithm delivered solutions with lower cost function 

Initial input 
using the cheapest and greatest difference initial input 

Rejected model in the medium grid whereas in the large grid, the 
model 

algorithm minimized the cost function better in the 
random input model. 

The algorithm produced a more spatially compact land use 
Cost model Rejected allocation using fuzzy model than in other models in the 

large grid. 
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Regarding the parameters for the Tabu Search, the lowest value of Tabu length (Ti)= 

(10) and the swapping rate (SR)= (50*Vc) were found to be appropriate in solving a 

MOLAA problem. The fuzzy cost model with random initial input solution was found 

to be suitable model for applying Tabu Search based on the improvement in the cost 

function and the spatial compactness. The performance of this algorithm will be 

compared with the MOLA module and the Simulated Annealing in Chapter 9. 
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Chapter 9 

COMPARING THE GIS BASED MOLA AND 
COMB/NA TORY METHODS 

This chapter presents a comparison of the MOLA module and two combinatory 

methods in solving the MO LAA problem. The performance of these methods in solving 

the MOLAA problem was compared in terms of the quality of the solution, run time and 

spatial compactness. In order to compare the quality of the solutions by these methods, 

the cost function for the solution obtained from the MOLA module was derived by 

summing up the cost suitability values for the allocated land use to all land units (see 

Chapter 5). In addition, the combinatory methods are also compared in terms of 

enhancing spatial compactness by incorporating a compactness function in both 

algorithms. These comparisons should provide an informed choice of method in solving 

a MOLAA problem to decision makers, planners and the concerned stakeholders. 

9.1 Results 

9.1. 1 Comparing the solutions to the MOLAA problem by 
Combinatory methods and MOLA module 

9.1.1.1 Cost function as a measure of overall of land use suitability 

T<}bles 9.1 and 9.2 present the cost range and the total cost values for the land units 

allocated to different land uses by the MOLA module, Simulated Annealing and Tabu 

Search by the ordinal and continuous models, respectively. The combinatory methods 

produced a lower cost function than the MOLA in both models. The cost function 

arrived at by the MOLA exceeded the combinatory method's cost function by more than 

13 and 7 .5 percent in the ordinal and continuous models, respectively. Within the 

combinatory methods, the mean cost functions between the Simulated Annealing and 

Tabu Search did not differ significantly at 95 percent confidence interval for all three 

initial input solutions. However, the cost functions were slightly more improved by the 

Simulated Annealing than by Tabu Search in all models. 
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Table 9.1 Cost suitability values in the output from MOLA, SA and TS using 
ordinal model 

Land use Type ~-- ---~Q!:A_, __ ~ ___ §i!E~lated J\1212~'-!:!i,~g __ , __ Iab~--~~arch,~--
Min Max Total Min Max Total Min Max Total 

Conservation 
Agriculture 
Forestry 
Development 
Cost Function 

223 1000 52561783 223 675 41698694 223 675 41703102 
200 333 12841213 200 434 13374134 200 434 13370883 
200 253 6578076 237 400 7478016 237 400 7479408 
223 363 5301079 223 450 5734954 223 450 5732916 

77282151 68285798 68286309 

Table 9.2 Cost suitability values in the output from MOLA, SA and TS using 
continuous model 

MOLA Land use Type _,,___ ---· 
Min Max Total 

Simulated J\21n~ali,!11L_, __ _ 
Min Max Total Min 

Tahu Search ----· 
Max Total 

Conservation 
Agriculture 
Forestry 
Development 

Cost function 

462 1562 90054146 
392 671 25679767 
414 552 14342803 
417 541 9371998 

139448714 

462 1219 78321890 462 
392 800 25380751 392 
505 653 15677590 505 
433 720 10324715 433 

129704946 

1219 78334039 
800 25386140 
653 15677238 
710 10308885 

129706302 

At the land use levels, the total suitability costs for agriculture, forestry and 

development uses were found to be lower in the solution reached by the MOLA than 

that of the combinatory methods in the ordinal model. The higher cost function 

achieved by the MOLA module was actually due to a less suitable land use allocation 

for conservation in both ordinal and continuous cost models. 

In the case of the combinatory methods, the Simulated Annealing and Tabu Search 

allocated the same range of cost values for all land uses (see Tables 9.1 and 9.2). The 

cost functions were more improved in the land use allocations by Simulated Annealing 

than by Tabu Search in all cost models (see Tables 7 .17 in Chapter 7 and 8.13 in . 
Chapter 8). Although Tabu Search produced a near optimal solution much more quickly 

than Simulated Annealing at the same swapping rates, these solutions were not as 

satisfactory as the solutions by the Simulated Annealing (see Section 7.1.4 in Chapter 7 

and Section 8.1.5 in Chapter 8). 

Tables 9.3 and 9.4 illustrate the consistency in land use allocation by three different 

methods for the ordinal and continuous models. Simulated Annealing and Tabu Search 

produced consistently similar land use allocation, but both produced quite different land 

use allocation to the MOLA method. For instance, the Simulated Annealing and the 

Tabu Search allocated more than 99 percent land units with the same land uses in the 

continuous model (see Table 9.4). 

169 



Table 9.3 Consistency in land use allocation between different methods in the 
ordinal cost suitability model 

-M--m?'/ff/~~ff/h ____ ff/ftW///,WM>W/_$///hW/#//,,,,_,,,ffi'M*;W/. W#/////.MY/---7'.&=-/-//#/,<_..mm<'M'hWff////M'#//&/&'//-==«/MWM«='.=='////#/Jo:W/##/,amw..=--<'ff/<V/h--W##h< 

MOLA-Simulated 
MOLA-Tabu Search 

Simulated Annealing-
Land use Type -~~-~Annt:~l!i~ Tabu Search 

·-~,_,,,,,,,,,,,,,~~~-,,,,~,,,,,,,,,,,,,,,~~,,~ 

#of cells Percent #of cells Percent #of cells Percent 
Conservation 63321 68.04 63335 68.06 92709 99.62 
Agriculture 29305 62.98 29319 63.01 44871 96.44 
Forestry 8870 31.77 8909 31.91 26036 93.26 
Develo12ment 11980 64.37 11972 64.32 18303 98.34 

Total 113476 60.97 113535 61.00 181919 97.74 
---~,.,,,,,,.,,,,,.,_ >V..W/H&<ffH,W,.,.MOOOWM<WMW.W..W.<WQ._..W.-»»>YHm>"//UbOW/.W.-»>YU.OW.««««<'.<,?WhW//.W.->m»>'-w>",?O>W//.WH.«<--~..WAW/hW-

Table 9.4 Consistency in ideal land use allocation between different methods in 
the continuous cost suitability model 

MOLA-Simulated Simulated Annealing-
Land use Type Annealin MOLA-Tabu Search Tabu Search ------.-~K--~ -· ···-~--~~~~~~-~-,~~~~~ 

#of cells Percent #of cells Percent #of cells Percent 
Conservation 68184 73.27 68223 73.31 92905 99.83 
Agriculture 33153 71.25 33173 71.29 46324 99.56 
Forestry 11387 40.79 11338 40.61 27711 99.26 
Develoement 7363 39.56 7431 39.92 18414 98.94 

Total 120087 64.52 120165 64.56 185354 99.59 
m')'~.O'fM'MO<O'H/.%W/.--,'Y.«««W--.WM»".WPA««< ,_.»WH/.-»»»>O<~»:---. oo-=:-w-WH/.--->"H///.W.«<-»;'""'"""//H/HHH/N>W-00'.«w.-

In the combinatory methods, minimization of the cost function was attributed to the 

acceptance of the cold-swaps and hot-swaps. Figure 9.1 compares the acceptance of 

these moves (hot-swaps and cold-swaps) between the Simulated Annealing and Tabu 

Search at the appropriate parameters for the ordinal models. The role of cold-swaps and 

hot-swaps in the cost function minimization for both algorithms is illustrated in Figure 

9.2. Figure 9.3 displays the cost minimization by the cold-swaps only after the hot­

swaps become zero and the number of cold-swaps per step that solely improve the cost 

function after all the hot-swaps were rejected by the algorithm, is shown in Figure 9.4. 

Although the acceptance of hot-swaps and cold-swaps was dependent on the parameters 

used in the algorithms, the cost function in the final solution was about the same for 

both the Simulated Annealing and Tabu Search. 
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Figure 9.1 Comparing the acceptance of hot-swaps and cold-swaps using the 
appropriate parameters between the Simulated Annealing and Tabu Search 
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Figure 9.3 Comparing the cost functions minimization by the cold-swaps only 
between the Simulated Annealing and Tabu Search 
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Figure 9.4 Comparing the acceptance of the cold-swaps per step after the hot­
swaps became zero in the Simulated Annealing and Tabu Search 

9.1.1.2 Spatial compactness a desirable criterion for land use 
allocation 

Figures 9.5 and 9.6 display a comparison of the spatial compactness in terms of the 

number of patches (Np) in the solutions by the MOLA module and the combinatory 

methods in the ordinal and continuous models, respectively. The combinatory methods 

produced better spatial compactness than the MOLA module for both models. Within 

the combinatory methods, the two methods produced similar spatial compactness in 

both models. In comparison to the MOLA module, land use allocation by the 

combinatory methods was found to be about 16 percent more compact in the ordinal 

model and about 5 percent more compact in the continuous model. However, the land 

use allocation by the MOLA module produced higher spatial compactness for 

conservation land use than the combinatory methods in both models. 
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Figure 9.5 Spatial compactness by three methods in the ordinal model 
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Figure 9.6 Spatial compactness by three methods in the continuous model 

9.1.1.3 Computation time as a measure of efficiency of the methods 

Regarding the efficiency of these methods, the MOLA module generated a solution to 

the large size MOLAA problem in less than two minutes using a Pentium IV PC. For 

this solution, Simulated Annealing took on average one hour and fifty-four minutes for 

the ordinal model and two hours and forty-three minutes for the continuous model, 

using the random initial input solution (see Table 7 .17 in Chapter 7). Tabu Search 

delivered the solutions in an average computation time of an hour and half in the ordinal 

model and seven hours nineteen minutes in the continuous model using the random 

initial input solution (see Table 8.13 in Chapter 8). Using the fuzzy model, Simulated 

Annealing delivered a solution in an average of two hours and forty-one minutes 

whereas Tabu Search took one hour more than Simulated Annealing. For the medium 

grid MOLAA problem, the computation time was less than one minute for the MOLA 

module and Simulated Annealing, whereas the Tabu Search delivered a solution in 

about two minutes. 

9. 1.2 Adding compactness function into the combinatory methods 

Table 9.5 compares the number of patches that resulted in the solutions by applying the 

Simulated Annealing and Tabu Search algorithms with different values of compactness 

factors, using the greatest difference initial input solution of all models in the medium 

grid. The Simulated Annealing produced better spatial compactness for the same values 

of compactness factors in all models except the Tabu Search in the medium grid. 
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Table 9.5 Spatial compactness at different compactness factor for the 
combinatory methods in the medium grid 

Compactness ____ S_im_u_l_at_ed_A_nn_e_a_li_n""g ________ T_a_b_u_S_e_ar_c_h ____ _ 
factor Ordinal Continuous Fuzzy Ordinal Continuous 

25 73 92 133 100 131 
50 53 62 106 72 95 
100 37 47 103 65 68 
200 32 35 70 51 65 

9.2 Discussion 

Fuzzy 
151 
114 
123 
102 

In solving the same MOLAA problem, the combinatory methods produced a lower cost 

function than the MOLA module in the ordinal and continuous models. This result can 

be attributed to the difference in the technique and the decision rule applied to solve the 

land use allocation problem. These combinatory methods are, in fact, approximation 

optimisation techniques and minimize the cost function in the final solution by 

allocating the cheapest possible land use to each land unit. Unlike these combinatory 

methods, the MOLA module is not an optimisation technique, rather it uses a fixed 

decision rule to allocate land use with the lowest rank value (in descending order, with 

rank value 1 the most suitable) to each land unit. This rule is found to be biased towards 

the lesser area requirement land uses by allocating more suitable land units to them 

(discussed in Chapter 6). In this hypothetical problem, if agriculture, forestry and 

development land uses were taken into consideration, the MOLA module produced a 

better result than the combinatory methods. However, the conservation land use which 

had the highest area requirement was allocated with less suitable land units and 

contributed to the higher cost function in the solution reached by the MOLA. 

The MOLA module uses a deterministic decision rule and produces the same land use 

allocation using the same rank maps (discussed in Chapter 6), but these combinatory 

methods rely on the iterative improvement of the cost function by exchanging land uses 

between randomly selected land units. Hence the algorithms with the same parameters 

may not produce the same cost function and spatial pattern in two independent runs. 

Nevertheless, both algorithms could produce the solution with the same cost function 

even at different parameters for the small grid (10 by 10 cells) MOLAA problem (see 

Chapters 7 and 8). This is because the algorithm is able to search all land units for the 

best possible land use and can allocate the same land use to each land unit. In the 

medium or large grid, the algorithms could not do this because of large possible 

combinations of decision variables (land uses and land units) and therefore, could not 
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allocate the same land use to each land unit and produce different cost functions and 

spatial patterns in different runs. However, the Simulated Annealing and Tabu Search 

produced similar cost functions and higher consistency by allocating the land units with 

the same land uses for the same cost suitability models (ordinal, continuous and fuzzy). 

The combinatory methods produced overall more compact land use allocations for the 

four land uses than the MOLA module. Spatial compactness is enhanced by allocating 

the adjoining land units with the same land use, that is, by reducing the number of 

patches under a single land use. However, there is a trade off between the spatial 

compactness and the cost function. Allocating the adjoining land units with the same 

land use despite the higher cost value increases the spatial compactness, but it also 

increases the cost function. This is exemplified by the MOLA module, which produces 

a solution with a better spatial compactness for conservation land use by allocating less 

suitable land units than if the combinatory methods were used for both models. 

Although the combinatory methods produced a less compact land use allocation for 

conservation land use than the MOLA module, the spatial compactness achieved for 

agriculture and forestry land uses with the higher cost than the MOLA module (see 

Tables 9.1and9.2) accounted for the overall more spatially compact land use allocation 

by the combinatory methods. 

The MOLA module was found to be very efficient compared to the combinatory 

methods in terms of computation time taken to deliver a solution to a MO LAA problem. 

It takes a short time to compare the rank values among the land uses in each land unit 

and assigns the land use with the best rank value. Unlike the MOLA module, the 

cdmbinatory methods randomly search for the suitable land use for each land unit by 

swapping land uses for a specified number of swaps in each step until the stopping 

criterion is met. In the case of the combinatory methods, the run time increases with the 

size, swapping rate and variability in the input cost models. Despite half the swapping 

rate (SR= 50* Ve) being used in the Tabu Search of that in the Simulated Annealing (SR 

= lOO*Vc), the former algorithm requires six-seven times more steps to reach the 

stopping criterion in the continuous model. Maintaining, updating and checking of the 

Tabu list and also the preventing the land use swapping between the same land use in 

the Tabu Search algorithm may have contributed to the higher computation time than in 

the Simulated Annealing. Thus the Tabu Search takes more than double the time taken 

by the Simulated Annealing in the continuous model. 
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Both combinatory methods have the same deterministic rule for accepting the 'moves' 

(cold-swaps), which improve the cost function. However, the main difference between 

the Simulated Annealing and Tabu Search lies in the rule for accepting the hot-swaps 

which increase the cost function. The former applies a probabilistic approach and the 

latter uses a deterministic approach to accept the hot-swaps. In Simulated Annealing, 

the Metropolis Criterion probabilistically determines the acceptance of hot-swaps 

(discussed in Chapter 3) and the number of acceptances of hot-swaps diminishes in the 

subsequent steps with decreasing value of the initial control parameter at the specified 

cooling rate. In the case of the Tabu Search, the hot-swaps are deterministically 

accepted as long as the potential hot-swap drops below five percent of the swapping rate 

(discussed in Chapter 5). The number of hot-swaps determines the number of cold­

swaps for the given swapping rate. In this hypothetical problem, the acceptance of hot­

swaps dropped quickly and became zero at the sixth step at the swapping rate (SR = 

50* Ve) in the Simulated Annealing (see Figure 9.1 ). The number of cold-swaps also 

decreased at about the same rate in the Simulated Annealing and accepted a few cold­

swaps per step until it became zero. In the Tabu Search, the acceptance of hot-swaps 

decreased gradually till the potential hot-swap acceptance dropped below five percent of 

the swapping rate at the 201h step. Due to the higher number of hot-swap acceptances in 

the Tabu Search, the cost function was not as much improved as in the Simulated 

Annealing. More improvement of the cost function took place after the hot-swaps 

became zero in the Tabu Search by accepting more than double the number of cold­

swaps in the Simulated Annealing (see Figures 9.3 and 9.4). The difference in the 

number of hot-swaps and cold-swaps acceptances does not a make difference in the cost 

function improvement between the Simulated Annealing and Tabu Search. The Tabu 

S~arch accepted more than 10 times the number of cold-swaps and hot-swaps than the 

Simulated Annealing (see Figure 9.1) but minimized the cost function to about the same 

level (see Figure 9.2). 

The more spatially compact land use allocation in Simulated Annealing for the same 

values of compactness factor could be attributed to the stopping rule used in these 

algorithms (see Table 9.5). In the case of Simulated Annealing, the algorithm stopped 

when the acceptance of cold-swaps became zero in an iteration step. Thus the algorithm 

with compactness function could accept more land use exchanges which increased 

spatial compactness. In Tabu Search, the algorithm terminated when the cost function 

did not change throughout an iteration step. This stopping criterion has the same 
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implication as the stopping criterion used for the Simulated Annealing in optimising 

land use allocation without compactness function. However, the stopping rule of Tahu 

Search did not allow the algorithm to run if the cost function was higher than the 

previous iteration step. Therefore, the Tahu Search algorithm with compactness function 

terminated before the cold-swaps became zero and resulted lesser spatial compactness 

than the Simulated Annealing. 

9.3 Conclusion 

Both combinatory methods produced a solution superior to that reached by the MOLA 

module with minimum cost function, as well as a more spatially compact land use 

allocation for the same MOLAA problem. These combinatory methods are approximate 

optimisation methods and they produce a final solution with minimum cost function by 

searching for a land use for each land unit at the lowest cost. The MOLA module is a 

deterministic method and uses a fixed decision rule (discussed in Chapter 3) to allocate 

a land use to each land unit with the best rank value using the rank maps. However, the 

MOLA produces a solution with the same spatial pattern in different runs for the same 

data inputs (rank maps). It could neither maximize land use suitability nor the spatial 

compactness and as a result, produced a solution inferior to that reached by the 

combinatory methods. 

However, the combinatory methods were not as efficient as the MOLA module in terms 

of the computation time taken to deliver a solution to a large grid MOLAA problem. 

These methods generate a solution that is close to a near-optimal solution in an 

acceptable computational time. Hence, the combinatory methods are found to be more 

appropriate in solving a MOLAA problem than the MOLA module, but computation 

time had to be compromised in order to reach a good solution. 

Within the combinatory methods, the Simulated Annealing was found to be more 

efficient and effective than the Tahu Search in solving a MOLAA problem. The former 

method delivered a solution to MOLAA problems in all sizes with lower cost function 

in less computation time than the latter method. 
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9.4 Summary 

This chapter presented a comparison of the MOLA module and the combinatory 

methods in solving the same MOLAA problem. The solutions obtained by applying 

these methods were compared by using the cost function, spatial compactness and the 

computation time. The cost function was more improved in the solution by the 

combinatory methods than that of the MOLA module. The spatial compactness 

measured in the number of patches was also found to be less in the land use allocation 

by the combinatory methods. However, the MOLA module was found to be 

computationally more efficient than the combinatory methods. Within the combinatory 

methods, the Simulated Annealing produced better solution than the Tabu Search in less 

computation time. 
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Chapter 10 

CONCLUSIONS 

The main aim of this research was to compare the performance of two combinatory 

methods and a GIS based MOLA module in solving a multi-objective land use 

assessment and allocation problem in order to provide an informed choice among these 

methods. Among the combinatory methods, Simulated Annealing and Tabu Search 

algorithms were chosen and their performances were compared with the MOLA module 

in IDRISI® by using the cost suitability values, spatial compactness and computation 

time to deliver the solution. 

Decision makers/land use planners or consultants could apply these methods to solve 

multi-objective land use assessment and allocation (MOLAA) problems in regional land 

use planning that involves several stakeholders. The Multi-Criteria Evaluation (MCE) 

technique, the methodology used in this study, would enable the decision makers/land 

use planners or consultants to use the different socio-economic and environmental aims 

of the stakeholders to decide on multiple criteria for assessing the suitability of each 

land unit or land parcel for different land uses. These methods accomplish land use 

allocation by using aggregate land use suitability values derived by the Weighted Linear 

Combination method. These methods objectively produced a solution to the MOLAA 

problem based on the criteria and their preferences specified by the stakeholders . . 
Therefore, the decision makers/land use planners or consultants will find these methods 

useful for reaching a consensus decision among stakeholders, using the land use 

allocation alternatives generated by these methods. The overall conclusions of this 

research regarding the application and comparisons of three different methods in 

solving a MO LAA problem are as follows: 

This study demonstrated the application of two combinatory methods (Simulated 

Annealing and Tabu Search) in solving a MOLAA problem using land use cost 

suitability models generated by a Weighted Linear Combination of ordinal, continuous 

and fuzzy criteria maps. 
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For a land allocation problem, the solutions delivered by the MOLA module and the 

combinatory methods were found to be different due to the difference in the approaches 

and the different rules of land use allocation between these two methods. The MOLA 

module applies a deterministic approach whereas the combinatory methods are based on 

an iterative approach for assigning a land use to each land unit. Another difference is 

that the MOLA module uses the rank maps derived from the land use suitability maps 

but the combinatory methods use the same land use suitability modules, with the lowest 

values representing the highest relative suitability and the lowest relative suitability 

being represented by the highest values. 

For the same MOLAA problem, the combinatory methods improved (minimized) the 

cost function in the final solution higher than in the solution generated by the MOLA 

module. The combinatory methods allocate each land unit with a land use that has the 

lowest cost suitability value and can generate a solution close to a near optimal solution 

to a MOLAA problem. In the case of the MOLA module, it ignores the relative 

suitability of various land uses for each land unit and assigns land use by taking into 

account the rank values. Hence, this module could not maximize land use suitability for 

a MOLAA problem and resulted a higher cost function. 

Without taking into account the spatial compactness function in the algorithms, these 

combinatory methods could produce a land use allocation with overall higher spatial 

compactness than the solution by the MOLA module. However, the MOLA module 

could produce higher spatial compactness for those land uses with higher area 

requirements. 

In the combinatory methods, users are able to see the difference between the initial and 

the final solution and the improvement in the land use allocation brought about by the 

algorithm. Therefore, decision makers/land use planners would be able to see the 

improvement in the land use allocation by comparing the initial and final solutions. In 

addition, these algorithms also provide an exact quantitative estimate of the cost 

function in the initial solution and the final solution and the saving in the cost between 

these two solutions in the output file. However, the MOLA module does not provide 

such a comparison and the quality of the solution could not be evaluated. 

Both algorithms could produce more compact land use allocations by incorporating a 

compactness function in the algorithms. However, the MOLA module does not have 
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this capability. The users could choose the compactness factor value to achieve a 

desired level of spatial compactness, but the value depends on the magnitude of values 

of the cost suitability models. The users could also apply a compactness function in 

Simulated Annealing and Tahu Search in order to achieve a better spatial compactness 

using appropriate compactness factor. This study found that Simulated Annealing 

produced a better spatial compactness than Tahu Search using the same values of 

compactness factor and cost model. 

Users would find the MOLA module very efficient and justify their choice of applying 

this module to solving a MO LAA problem. In terms of the computation time taken by 

the combinatory methods to deliver a solution to the same problem, this group of 

methods was found to be less efficient compared to the MOLA module, however, they 

delivered a solution in an acceptable period of time. 

The Simulated Annealing could produce a global solution with a very slow cooling rate 

and a high number of swaps in Mode 1 cooling function. However, a more appropriate 

annealing schedule was found to be more efficient and could produce a solution close to 

a near-optimal solution. The algorithm should be applied using an annealing schedule 

with a high value of initial control parameter, cooling by the very fast cooling rate (0.2) 

after a swapping rate of 100 times the number of valid cells in the grid for solving a 

MOLAA problem. In this annealing schedule, the cooling rate is fixed and the user can 

easily decide on the swapping rate after finding the number of valid cells in the grid. 

Regarding the initial control parameter value, they could apply the algorithm a few 

times in order to find an appropriate value of the control parameter for the input 

scHution. 

The user could also apply Tahu Search to a MOLAA problem simply by using only two 

parameters, that is, Tahu length and number of swaps per step (swapping step). The 

appropriate values of the Tahu length and swapping rate were found to be 10 and 50 

times the number of valid cells in the grid, respectively. The higher value of Tahu 

length did not influence the cost function minimization and therefore, the appropriate 

value of the Tahu length was fixed at 10, the lowest value allowed in the programme. 

The users could easily find out the number of valid cells in the grid by excluding the 

mandatory land uses during preparing the input models. In contrast to Simulated 
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Annealing, Tabu Search uses a deterministic rule for accepting the hot-swaps and the 

users can easily understand the algorithmic process of the Tabu Search. 

The land use allocation by these algorithms was influenced by the cost suitability 

models and the initial input solution in solving a MOLAA problem. The algorithms 

performed better in the model with a higher number of discrete values (representing 

land use suitability for different land uses, that is, the fuzzy model) than in the one with 

a lesser number of discrete values as in the continuous and ordinal models. The users 

might find the ordinal model simpler than the fuzzy model. However, the fuzzy model 

is less subjective than the ordinal model and requires only thresholds for suitable and 

unsuitable attribute classes for a criterion. The decision makers/land use planners or 

consultants may find it easier to arrive at a consensus about these thresholds values 

among the stakeholders by employing the fuzzy model. 

These algorithms could produce even more improvement in the cost function by using 

the random initial input solution of the fuzzy cost model. The users could a find huge 

visual difference between the random initial input solution and the final solution and 

also notice a quantitative difference between the initial and final cost functions. The 

visual difference is not so noticeable between the cheapest or greatest difference initial 

input solution and the final solution. 

In the comparison of two combinatory methods in terms of the quality of the solution, 

spatial compactness and computation time, the Simulated Annealing delivered a better 

quality solution with lesser cost function and higher spatial compactness in less 

c"mputation time than that taken by Tabu Search for the same MO LAA problem. Thus, 

the users could obtain better decision alternatives to a land use allocation problem by 

applying Simulated Annealing with the recommended appropriate annealing schedule, 

using the random initial input solution of a fuzzy model. 

Thus Simulated Annealing has been demonstrated to be a highly suitable tool for 

solving a large size MOLAA problem within a reasonable time frame. This algorithm 

should be integrated within the GIS environment with the user-friendly Graphic User 

Interface so that this tool is available to provide genuine support in land use decision­

making. 

182 



This study considered two spatial attributes, that is, area and spatial compactness, in 

these algorithms. Future research should consider incorporating other desirable (spatial 

or non-spatial) attributes like a shape and adjacency requirement in the algorithm. 

In the case of Tabu Search, the Tabu list with location attributes of the land units did not 

exert any influence on the cost function minimization. Future research should look at 

other attributes like cost value and land use in defining the Tabu list and evaluate their 

influence on the overall performance of the algorithm. 
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Annex -1: An example of output summary from the Simulated 
Annealing 

*** siman2d *** 

Simulated annealing program 
Version 1.10 
written by Steve Leahy, SRES, ANU 
April 2004 
for Sunil Sharma 

Running in mode 1 - hot and cold swaps 

Initial temperature=l5000.000000 
Temperature reduction factor=0.200000 
Minimum temperature =0.000000 
Number of swaps per interation=l8611800 

Compactness factor=O 

Will not output intermediate grids 

Parsing header file: 

Done 
header file is:con525.hdr 

Array width=525 
Array height=525 
Array size=275625 

Loading input cost grid output 525or C: 
float file is:output 52Sor_C.flt 

Done 

Loading input land use grid output 525or LU: 
float file is:output_525or_LU.flt-

Done 

Loading land use class 0 array con525: 
float file is:con525.flt 

Done 

Loading land use class 1 array agri525: 
float file is:agri525.flt 

Done 

Loading land use class 2 array foro525: 
float file is:foro525.flt 

Done . 
Loading land use class 3 array deve525: 

float file is:deve525.flt 
Done 

Number of noData points in grid: 89507 

Number of valid points in grid: 186118 

Initial total cost of grid=93526457 

It: 1 Temp: 15000 Cold: 5980739 Hot: 5981880 Zero-nonswap:6529691 Tot: 
93021561 
It: 2 Temp: 3000 Cold: 5754102 Hot: 5750808 Zero-nonswap:6527723 Tot: 91436440 
It: 3 Temp: 600 Cold: 4751168 Hot: 4738393 Zero-nonswap:6527456 Tot: 86555791 
It: 4 
It: 5 
It: 6 
It: 7 
It: 8 
It: 9 
It: 10 
It: 11 
It: 12 
It: 13 
It: 14 

Temp: 120 Cold: 1947371 Hot: 1904023 Zero-nonswap:6504173 Tot: 75072291 
Temp: 24 Cold: 302038 Hot: 238666 Zero-nonswap:6463286 Tot: 69022885 
Temp: 4.80 Cold: 43022 Hot: 16673 Zero-nonswap:6440850 Tot: 68348674 
Temp: 0.960 Cold: 6357 Hot: 1096 Zero-nonswap:6436630 Tot: 68303400 
Temp: 0.1920000166 Cold: 1618 Hot: 17 Zero-nonswap:6431796 Tot: 68294447 
Temp: 0.0384000055 Cold: 652 Hot: O Zero-nonswap:6430331 Tot: 68291008 

Temp: 0.0076800012 Cold: 382 Hot: O Zero-nonswap:6430501 Tot: 68289192 
Temp: 0.0015360003 Cold: 206 Hot: O Zero-nonswap:6433715 Tot: 68288221 
Temp: 0.0003072001 Cold: 150 Hot: O Zero-nonswap:6432339 Tot: 68287578 
Temp: 0.0000614400 Cold: 107 Hot: O Zero-nonswap:6431188 Tot: 68287189 
Temp: 0.0000122880 Cold: 86 Hot: 0 Zero-nonswap:6432413 Tot: 68286897 
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It: 15 Temp: 0.0000024576-Cold: 60 Hot: O Zero-nonswap:6430404 Tot: 68286711 
It: 16 Temp: 0.0000004915 Cold: 49 Hot: O Zero-nonswap:6432915 Tot: 68286548 
It: 17 Temp: 0.0000000983 Cold: 44 Hot: 0 Zero-nonswap:6432483 Tot: 68286413 
It: 18 Temp: 0.0000000197 Cold: 25 Hot: O Zero-nonswap:6433538 Tot: 68286347 
It: 19 Temp: 0.0000000039 Cold: 24 Hot: 0 Zero-nonswap:6433055 Tot: 68286279 
It: 20 Temp: 0.0000000008 Cold: 26 Hot: 0 Zero-nonswap:6429741 Tot: 68286221 
It: 21 Temp: 0.0000000002 Cold: 22 Hot: O Zero-nonswap:6430273 Tot: 68286134 
It: 22 Temp: 0.0000000000 Cold: 16 Hot: O Zero-nonswap:6430421 Tot: 68286099 
It: 23 Temp: 0.0000000000 Cold: 9 Hot: O Zero-nonswap:6435530 Tot: 68286070 
It: 24 Temp: 0.0000000000 Cold: 11 Hot: o Zero-nonswap:6433965 Tot: 68286042 
It: 25 Temp: 0.0000000000 Cold: 7 Hot: O Zero-nonswap:6431622 Tot: 68286026 
It: 26 Temp: 0.0000000000 Cold: 8 Hot: 0 Zero-nonswap:6432330 Tot: 68286000 
It: 27 Temp: 0.0000000000 Cold: 3 Hot: O Zero-nonswap:6431168 Tot: 68285994 
It: 28 Temp: 0.0000000000 Cold: 11 Hot: 0 Zero-nonswap:6429728 Tot: 68285975 
It: 29 Temp: 0.0000000000 Cold: 9 Hot: O Zero-nonswap:6432997 Tot: 68285952 
It: 30 Temp: 0.0000000000 Cold: 3 Hot: 0 Zero-nonswap:6429348 Tot: 68285944 
It: 31 Temp: 0.0000000000 Cold: 6 Hot: 0 Zero-nonswap:6430547 Tot: 68285928 
It: 32 Temp: 0.0000000000 Cold: 4 Hot: O Zero-nonswap;6431729 Tot: 68285921 
It: 33 Temp: 0.0000000000 Cold: 7 Hot: O Zero-nonswap:6431016 Tot: 68285913 
It: 34 Temp: 0.0000000000 Cold: 4 Hot: O Zero-nonswap:6432582 Tot: 68285907 
It: 35 Temp: 0.0000000000 Cold: 2 Hot: 0 Zero-nonswap:6429832 Tot: 68285903 
It: 36 Temp: 0.0000000000 Cold: 3 Hot: 0 Zero-nonswap:6431301 Tot: 68285897 
It: 37 Temp: 0.0000000000 Cold: 4 Hot: O Zero-nonswap:6429479 Tot: 68285889 
It: 38 Temp: 0.0000000000 Cold: 6 Hot: 0 Zero-nonswap:6432274 Tot: 68285882 
It: 39 Temp: 0.0000000000 Cold: 4 Hot: 0 Zero-nonswap:6432173 Tot: 68285876 
It: 40 Temp: 0.0000000000 Cold: 1 Hot: O Zero-nonswap:6431526 Tot: 68285875 
It: 41 Temp: 0.0000000000 Cold: 1 Hot: 0 Zero-nonswap:6430129 Tot: 68285870 
It: 42 Temp: 0.0000000000 Cold: 2 Hot: 0 Zero-nonswap:6434556 Tot: 68285866 
It: 43 Temp: 0.0000000000 Cold: 4 Hot: O Zero-nonswap:6434974 Tot: 68285861 
It: 44 Temp: 0.0000000000 Cold: 1 Hot: O Zero-nonswap:6431706 Tot: 68285859 
It: 45 Temp: 0.0000000000 Cold: 1 Hot: 0 Zero-nonswap:6431526 Tot: 68285858 
It: 46 Temp: 0.0000000000 Cold: 4 Hot: O Zero-nonswap:6433345 Tot: 68285853 
It: 47 Temp: 0.0000000000 Cold: 1 Hot: O Zero-nonswap:6430469 Tot: 68285852 
It: 48 Temp: 0.0000000000 Cold: 4 Hot: O Zero-nonswap:6431848 Tot: 68285844 
It: 49 Temp: 0.0000000000 Cold: 1 Hot: O Zero-nonswap:6429670 Tot: 68285843 
It: 50 Temp: 0.0000000000 Cold: 3 Hot: O Zero-nonswap:6432848 Tot: 68285837 
It: 51 Temp: 0.0000000000 Cold: 0 Hot: 0 Zero-nonswap:6431567 Tot: 68285837 

Number of temperature interations=51 

Original total cost=93526457 
New total cost=68285837 
Saving=25240620 

Writing final output land use grid output 525or_final_LU to disc:Done 

Writing final output cost grid output 525or_final_C to disc:Done 

*** end simulated annealing *** 
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Annex- 2: An example of output summary from the Tabu 
Search 

*** taboo.exe *** 

written by Steve Leahy, SRES, ANU 
January 2005 
for Sunil Sharma 

Running in mode 1 - static number of swaps per iteration 

Number of comparisons per cell=l 

Static number of swaps per interation=9305900 

Compactness f actor=O 

Will not output intermediate grids 

Parsing header file: 

Done 
header file is:con525o.hdr 

Array width=525 
Array height=525 
Array size=275625 

Taboo list length=lO 

Loading input cost grid output 525or C: 
float file is:output_525or_C.flt 

Done 

Loading input land use grid output 525or LU: 
float file is:output 525or_LU.flt-

Done 

Loading land use class 0 array con525o: 
float file is:con525o.flt 

Done 

Loading land use class 1 array agri525o: 
float file is:agri525o.flt 

Done 

Loading land use class 2 array foro525o: 
float file is:foro525o.flt 

Done 

Loading land use class 3 array deve525o: 
float file is:deve525o.flt 

Done 

cross-validating input grids:done 

Number of noData points in grid: 89507 

Number of valid points in grid: 186118 

Initial total cost of grid=93526457 

Iteration: 1 Pot. swaps: 9305900 act. swaps: 9224953 pot. hot swaps 9305900 
cold swaps: 4612830 hot swaps: 4612123 Total cost: 93500043 

Iteration: 2 Pot. swaps: 9305900 act. swaps: 9224782 pot. hot swaps 4652950 
cold swaps: 4611939 hot swaps: 4612843 Total cost: 93545398 

Iteration: 3 Pot. swaps: 9305900 act. swaps: 6380053 pot. hot swaps 3101966 
cold swaps: 3278087 hot swaps: 3101966 Total cost: 68817117 

Iteration: 4 Pot. swaps: 9305900 act. swaps: 4783648 pot. hot swaps 2326475 
cold swaps: 2457173 hot swaps: 2326475 Total cost: 68573265 

Iteration: 5 Pot. swaps: 9305900 act. swaps: 3856211 pot. hot swaps 1861180 
cold swaps: 1995031 hot swaps: 1861180 Total cost: 68506184 

Iteration: 6 Pot. swaps: 9305900 act. swaps: 3237298 pot. hot swaps 1550983 
cold swaps: 1686315 hot swaps: 1550983 Total cost: 68469973 

Iteration: 7 Pot. swaps: 9305900 act. swaps: 2796854 pot. hot swaps 1329414 
cold swaps: 1467440 hot swaps: 1329414 Total cost: 68450670 

Iteration: 8 Pot. swaps: 9305900 act. swaps: 2463367 pot. hot swaps 1163237 
cold swaps: 1300130 hot swaps: 1163237 Total cost: 68439314 

Iteration: 9 Pot. swaps: 9305900 act. swaps: 2204661 pot. hot swaps 1033988 
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cold swaps: 1170673 hot swaps: 1033988 Total cost: 68427795 
Iteration: 10 Pot. swaps: 9305900 act. swaps: 1998198 pot. hot swaps 930590 

cold swaps: 1067608 hot swaps: 930590 Total cost: 68418439 
Iteration: 11 Pot. swaps: 9305900 act. swaps: 1829234 pot. hot swaps 845990 

cold swaps: 983244 hot swaps: 845990 Total cost: 68413784 
Iteration: 12 Pot. swaps: 9305900 act. swaps: 1689664 pot. hot swaps 775491 

cold swaps: 914173 hot swaps: 775491 Total cost: 68411632 
Iteration: 13 Pot. swaps: 9305900 act. swaps: 1568540 pot. hot swaps 715838 

cold swaps: 852702 hot swaps: 715838 Total cost: 68410793 
Iteration: 14 Pot. swaps: 9305900 act. swaps: 1468002 pot. hot swaps 664707 

cold swaps: 803295 hot swaps: 664707 Total cost: 68407513 
Iteration: 15 Pot. swaps: 9305900 act. swaps: 1379296 pot. hot swaps 620393 

cold swaps: 758903 hot swaps: 620393 Total cost: 68402689 
Iteration: 16 Pot. swaps: 9305900 act. swaps: 1301323 pot. hot swaps 581618 

cold swaps: 719705 hot swaps: 581618 Total cost: 68403573 
Iteration: 17 Pot. swaps: 9305900 act. swaps: 1234357 pot. hot swaps 547405 

cold swaps: 686952 hot swaps: 547405 Total cost: 68402724 
Iteration: 18 Pot. swaps: 9305900 act. swaps: 1173003 pot. hot swaps 516994 

cold swaps: 656009 hot swaps: 516994 Total cost: 68397715 
Iteration: 19 Pot. swaps: 9305900 act. swaps: 1119254 pot. hot swaps 489784 

cold swaps: 629470 hot swaps: 489784 Total cost: 68396601 
Iteration: 20 Pot. swaps: 9305900 act. swaps: 1070266 pot. hot swaps 465295 

cold swaps: 604971 hot swaps: 465295 Total cost: 68402478 
Iteration: 21 Pot. swaps: 9305900 act. swaps: 6884 pot. hot swaps O 

cold swaps: 6884 hot swaps: O Total cost: 68320898 
Iteration: 22 Pot. swaps: 9305900 act. swaps: 2135 pot. hot swaps O 

cold swaps: 2135 hot swaps: 0 Total cost: 68303661 
Iteration: 23 Pot. swaps: 9305900 act. swaps: 1049 pot. hot swaps O 

cold swaps: 1049 hot swaps: O Total cost: 68296833 
Iteration: 24 Pot. swaps: 9305900 act. swaps: 600 pot. hot swaps 0 

cold swaps: 600 hot swaps: O Total cost: 68293446 
Iteration: 25 Pot. swaps: 9305900 act. swaps: 379 pot. hot swaps O 

cold swaps: 379 hot swaps: O Total cost: 68291567 
Iteration: 26 Pot. swaps: 9305900 act. swaps: 266 pot. hot swaps O 

cold swaps: 266 hot swaps: O Total cost: 68290347 
Iteration: 27 Pot. swaps: 9305900 act. swaps: 204 pot. hot swaps O 

cold swaps: 204 hot swaps: O Total cost: 68289490 
Iteration: 28 Pot. swaps: 9305900 act. swaps: 149 pot. hot swaps O 

cold swaps: 149 hot swaps: 0 Total cost: 68288866 
Iteration: 29 Pot. swaps: 9305900 act. swaps: 105 pot. hot swaps O 

cold swaps: 105 hot swaps: O Total cost: 68288464 
Iteration: 30 Pot. swaps: 9305900 act. swaps: 101 pot. hot swaps O 

cold swaps: 101 hot swaps: O Total cost: 68288148 
Iteration: 31 Pot. swaps: 9305900 act. swaps: 65 pot. hot swaps O 

cold swaps: 65 hot swaps: O Total cost: 68287930 
Iteration: 32 Pot. swaps: 9305900 act. swaps: 59 pot. hot swaps O 

cold swaps: 59 hot swaps: O Total cost: 68287748 
Iteration: 33 Pot. swaps: 9305900 act. swaps: 54 pot. hot swaps O 

cold swaps: 54 hot swaps: O Total cost: 68287591 
Iteration: 34 Pot. swaps: 9305900 act. swaps: 41 pot. hot swaps O 

cold swaps: 41 hot swaps: 0 Total cost: 68287474 
Iteration: 35 Pot. swaps: 9305900 act. swaps: 35 pot. hot swaps O 

cold swaps: 35 hot swaps: O Total cost: 68287352 
Iteration: 36 Pot. swaps: 9305900 act. swaps: 24 pot. hot swaps O 

cold swaps: 24 hot swaps: 0 Total cost: 68287266 
Iteration: 37 Pot. swaps: 9305900 act. swaps: 32 pot. hot swaps O 

cold swaps: 32 hot swaps: O Total cost: 68287162 
Iteration: 38 Pot. swaps: 9305900 act. swaps: 28 pot. hot swaps O 

cold swaps: 28 hot swaps: O Total cost: 68287078 
Iteration: 39 Pot. swaps: 9305900 act. swaps: 26 pot. hot swaps O 

cold swaps: 26 hot swaps: O Total cost: 68287004 
Iteration: 40 Pot. swaps: 9305900 act. swaps: 18 pot. hot swaps o 

cold swaps: 18 hot swaps: O Total cost: 68286955 
Iteration: 41 Pot. swaps: 9305900 act. swaps: 15 pot. hot swaps O 

cold swaps: 15 hot swaps: o Total cost: 68286914 
Iteration: 42 Pot. swaps: 9305900 act. swaps: 8 pot. hot swaps o 

cold swaps: 8 hot swaps: 0 Total cost: 68286886 
Iteration: 43 Pot. swaps: 9305900 act. swaps: 9 pot. hot swaps O 

cold swaps: 9 hot swaps: O Total cost: 68286866 
Iteration: 44 Pot. swaps: 9305900 act. swaps: 10 pot. hot swaps O 

cold swaps: 10 hot swaps: O Total cost: 68286836 
Iteration: 45 Pot. swaps: 9305900 act. swaps: 11 pot. hot swaps O 

cold swaps: 11 hot swaps: O Total cost: 68286818 
Iteration: 46 Pot. swaps: 9305900 act. swaps: 6 pot. hot swaps o 

cold swaps: 6 hot swaps: 0 Total cost: 68286807 
Iteration: 47 Pot. swaps: 9305900 act. swaps: 13 pot. hot swaps O 

cold swaps: 13 hot swaps: 0 Total cost: 68286781 
Iteration: 48 Pot. swaps: 9305900 act. swaps: 11 pot. hot swaps O 

cold swaps: 11 hot swaps: 0 Total cost: 68286756 
Iteration: 49 Pot. swaps: 9305900 act. swaps: 6 pot. hot swaps O 
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cold swaps: 6 hot swaps: 0 Total cost: 68286744 
Iteration: 50 Pot. swaps: 9305900 act. swaps: 6 pot. hot swaps O 

cold swaps: 6 hot swaps: O Total cost: 68286730 
Iteration: 51 Pot. swaps: 9305900 act. swaps: 5 pot. hot swaps 0 

cold swaps: 5 hot swaps: O Total cost: 68286720 
Iteration: 52 Pot. swaps: 9305900 act. swaps: 5 pot. hot swaps 0 

cold swaps: 5 hot swaps: O Total cost: 68286711 
Iteration: 53 Pot. swaps: 9305900 act. swaps: 3 pot. hot swaps 0 

cold swaps: 3 hot swaps: O Total cost: 68286708 
Iteration: 54 Pot. swaps: 9305900 act. swaps: 10 pot. hot swaps 0 

cold swaps: 10 hot swaps: o Total cost: 68286690 
Iteration: 55 Pot. swaps: 9305900 act. swaps: 4 pot. hot swaps 0 

cold swaps: 4 hot swaps: O Total cost: 68286680 
Iteration: 56 Pot. swaps: 9305900 act. swaps: 6 pot. hot swaps O 

cold swaps: 6 hot swaps: 0 Total cost: 68286672 
Iteration: 57 Pot. swaps: 9305900 act. swaps: 6 pot. hot swaps O 

cold swaps: 6 hot swaps: 0 Total cost: 68286661 
Iteration: 58 Pot. swaps: 9305900 act. swaps: 7 pot. hot swaps O 

cold swaps: 7 hot swaps: 0 Total cost: 68286645 
Iteration: 59 Pot. swaps: 9305900 act. swaps: 4 pot. hot swaps O 

cold swaps: 4 hot swaps: O Total cost: 68286634 
Iteration: 60 Pot. swaps: 9305900 act. swaps: 4 pot. hot swaps 0 

cold swaps: 4 hot swaps: O Total cost: 68286624 
Iteration: 61 Pot. swaps: 9305900 act. swaps: 4 pot. hot swaps O 

cold swaps: 4 hot swaps: 0 Total cost: 68286611 
Iteration: 62 Pot. swaps: 9305900 act. swaps: 6 pot. hot swaps O 

cold swaps: 6 hot swaps: O Total cost: 68286595 
Iteration: 63 Pot. swaps: 9305900 act. swaps: 5 pot. hot swaps O 

cold swaps: 5 hot swaps: o Total cost: 68286579 
Iteration: 64 Pot. swaps: 9305900 act. swaps: 3 pot. hot swaps O 

cold swaps: 3 hot swaps: O Total cost: 68286572 
Iteration: 65 Pot. swaps: 9305900 act. swaps: 1 pot. hot swaps O 

cold swaps: 1 hot swaps: O Total cost: 68286571 
Iteration: 66 Pot. swaps: 9305900 act. swaps: 2 pot. hot swaps O 

cold swaps: 2 hot swaps: O Total cost: 68286567 
Iteration: 67 Pot. swaps: 9305900 act. swaps: 3 pot. hot swaps O 

cold swaps: 3 hot swaps: O Total cost: 68286558 
Iteration: 68 Pot. swaps: 9305900 act. swaps: 1 pot. hot swaps O 

cold swaps: 1 hot swaps: O Total cost: 68286556 
Iteration: 69 Pot. swaps: 9305900 act. swaps: 2 pot. hot swaps O 

cold swaps: 2 hot swaps: O Total cost: 68286552 
Iteration: 70 Pot. swaps: 9305900 act. swaps: 3 pot. hot swaps O 

cold swaps: 3 hot swaps: O Total cost: 68286546 
Iteration: 71 Pot. swaps: 9305900 act. swaps: 2 pot. hot swaps O 

cold swaps: 2 hot swaps: 0 Total cost: 68286540 
Iteration: 72 Pot. swaps: 9305900 act. swaps: 3 pot. hot swaps O 

cold swaps: 3 hot swaps: 0 Total cost: 68286533 
Iteration: 73 Pot. swaps: 9305900 act. swaps: 4 pot. hot swaps O 

cold swaps: 4 hot swaps: O Total cost: 68286525 
Iteration: 74 Pot. swaps: 9305900 act. swaps: 1 pot. hot swaps O 

cold swaps: 1 hot swaps: O Total cost: 68286522 
Iteration: 75 Pot. swaps: 9305900 act. swaps: 1 pot. hot swaps O 

cold swaps: 1 hot swaps: O Total cost: 68286521 
Iteration: 76 Pot. swaps: 9305900 act. swaps: 1 pot. hot swaps O 

cold swaps: 1 hot swaps: O Total cost: 68286518 
Iteration: 77 Pot. swaps: 9305900 act. swaps: 1 pot. hot swaps o 

cold swaps: 1 hot swaps: O Total cost: 68286517 
Iteration: 78 Pot. swaps: 9305900 act. swaps: 2 pot. hot swaps O 

cold swaps: 2 hot swaps: O Total cost: 68286515 
Iteration: 79 Pot. swaps: 9305900 act. swaps: 2 pot. hot swaps O 

cold swaps: 2 hot swaps: o Total cost: 68286512 
Iteration: 80 Pot. swaps: 9305900 act. swaps: 1 pot. hot swaps O. 

cold swaps: 1 hot swaps: 0 Total cost: 68286510 
Iteration: 81 Pot. swaps: 9305900 act. swaps: O pot. hot swaps O 

cold swaps: 0 hot swaps: O Total cost: 68286510 

Number of interations=81 

Original total cost=93526457 
New total cost=68286510 

Saving=25239947 

Writing final output land use grid output_525or_final_LU to disc:Done 

Writing final output cost grid output_525or_final_C to disc:Done 

*** end Tabu Search*** 
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Annex- 3: An example of output file from the MOLA module 
Area desired for objective 1 93059 
Area desired for objective 2 46530 
Area desired for objective 3 27918 
Area desired for objective 4 18611 

cells 
cells 
cells 
cells 

Area tolerance : : O cells 
Results from Pass 1 : 
Objective : 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut 
Objective : 4 Cut 
Results from Pass 2 : 
Objective 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut : 
Objective : 4 Cut : 
Results from Pass 3 : 
Objective 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut : 
Objective : 4 Cut : 
Results from Pass 4 : 
Objective : 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut 
Objective : 4 Cut 
Results from Pass 5 : 
Objective 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut : 
Objective : 4 Cut : 
Results .from Pass 6 : 
Objective : 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut : 
Objective : 4 Cut : 
Results from Pass 7 : 
Objective 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut : 
Objective : 4 Cut : 
Results from Pass 8 : 
Objective : 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut : 
Objective : 4 Cut : 
Results from Pass 9 : 
Objective : 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut 
Objective : 4 Cut 
Results from Pass 10 
Oojective : 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut 
Objective : 4 Cut 
Results from Pass 11 
Objective : 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut 
Objective : 4 Cut 
Results from Pass 12 
Objective : 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut 
Objective : 4 Cut 
Results from Pass 13 
Objective : 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut 
Objective : 4 Cut 
Results from Pass 14 
Objective : 1 Cut 
Objective : 2 Cut 
Objective : 3 Cut 
Objective : 4 Cut 
Results from Pass 15 
Objective : 1 Cut 

93059 
46530 
27918 
18611 

128408 
64886 
35065 
28742 

140868 
71042 
35900 
31028 

151606 
74161 
36140 
31838 

160022 
76180 
36205 
32486 

165714 
77533 
36232 
33010 

170081 
78486 
36242 
33360 

173550 
79154 
36246 
33602 

176321 
79713 
36247 
33654 

178564 
80112 
36247 
33660 

180330 
80400 
36247 
33661' 

181699 
80591 
36247 
33662 

182798 
80713 
36247 
33663 

183621 
80804 
36247 
33663 

184250 

Goal 
Goal 
Goal 
Goal 

93059 
46530 
27918 
18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93D59 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
Goal 46530 
Goal : 27918 
Goal : 18611 

Goal : 93059 
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Achieved 
Achieved 
Achieved 
Achieved 

67441 
33367 
22228 
12051 

Achieved : 82070 
Achieved 41093 
Achieved : 27107 
Achieved : 16575 

Achieved : 83432 
Achieved 43607 
Achieved : 27680 
Achieved : 17835 

Achieved : 85341 
Achieved 44595 
Achieved : 27853 
Achieved : 17985 

Achieved : 87695 
Achieved 45215 
Achieved : 27891 
Achieved : 18101 

Achieved : 88888 
Achieved 45596 
Achieved : 27908 
Achieved : 18267 

Achieved : 89715 
Achieved 45871 
Achieved : 27914 
Achieved : 18372 

Achieved : 90368 
Achieved 45978 
Achieved : 27917 
Achieved : 18559 

Achieved : 90869 
Achieved 46134 
Achieved : 27918 
Achieved : 18605 

Achieved : 91326 
Achieved 46244 
Achieved : 27918 
Achieved : 18610 

Achieved : 91710 
Achieved : 46340 
Achieved : 27918 
Achieved : 18610 

Achieved : 91973 
Achieved 46408 
Achieved : 27918 
Achieved : 18610 

Achieved : 92243 
Achieved 46439 
Achieved : 27918 
Achieved : 18611 

Achieved : 92434 
Achieved 46466 
Achieved : 27918 
Achieved : 18611 

Achieved : 92586 



Objective : 2 Cut 80868 Goal 46530 Achieved 46491 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 16 
Objective 1 Cut 184725 Goal : 93059 Achieved : 92691 
Objective : 2 Cut 80907 Goal 46530 Achieved 46504 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 17 
Objective 1 Cut 185094 Goal : 93059 Achieved : 92783 
Objective : 2 Cut 80933 Goal 46530 Achieved 46516 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 18 
Objective 1 Cut 185371 Goal : 93059 Achieved : 92861 
Objective : 2 Cut 80947 Goal 46530 Achieved 46522 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 19 
Objective 1 Cut 185569 Goal : 93059 Achieved : 92909 
Objective : 2 Cut 80955 Goal 46530 Achieved 46524 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 20 
Objective 1 Cut 185719 Goal : 93059 Achieved : 92953 
Objective : 2 Cut 80961 Goal 46530 Achieved 46525 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 21 
Objective 1 Cut 185825 Goal : 93059 Achieved : 92987 
Objective : 2 Cut 80966 Goal 46530 Achieved 46525 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 22 
Objective 1 Cut 185897 Goal : 93059 Achieved : 92999 
Objective : 2 Cut 80971 Goal 46530 Achieved 46525 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 23 
Objective 1 Cut 185957 Goal : 93059 Achieved : 93013 
Objective : 2 Cut 80976 Goal 46530 Achieved 46526 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 24 
Objective 1 Cut 186003 Goal : 93059 Achieved : 93026 
Objective : 2 Cut 80980 Goal 46530 Achieved 46526 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 25 
Objective 1 Cut 186036 Goal : 93059 Achieved : 93038 
Objective : 2 Cut 80984 Goal 46530 Achieved 46526 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 26 
Objective 1 Cut 186057 Goal : 93059 Achieved : 93042 
Objective 2 Cut 80988 Goal 46530 Achieved 46526 
Objective 3 Cut 36247 Goal 27918 Achieved 27918 
Objective 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 27 
Objective 1 Cut 186074 Goal : 93059 Achieved : 93045 
Objective : 2 Cut 80992 Goal 46530 Achieved 46529 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 28 
Objective 1 Cut 186088 Goal : 93059 Achieved : 93048 
Objective : 2 Cut 80993 Goal 46530 Achieved 46529 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 29 
Objective 1 Cut 186099 Goal : 93059 Achieved : 93050 
Objective : 2 Cut 80994 Goal 46530 Achieved 46529 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 30 
Objective 1 Cut 186108 Goal : 93059 Achieved : 93053 
Objective : 2 Cut 80995 Goal 46530 Achieved 46529 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 31 
Objective : 1 Cut 186114 Goal : 93059 Achieved : 93057 
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Objective : 2 Cut 80996 Goal 46530 Achieved 46529 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 32 
Objective 1 Cut 186116 Goal : 93059 Achieved : 93059 
Objective : 2 Cut 80997 Goal 46530 Achieved 46529 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 33 
Objective 1 Cut 186116 Goal : 93059 Achieved : 93059 
Objective : 2 Cut 80998 Goal 46530 Achieved 46529 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 34 
Objective 1 Cut 186116 Goal : 93059 Achieved : 93059 
Objective : 2 Cut 80999 Goal 46530 Achieved 46529 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 35 
Objective 1 Cut 186116 Goal : 93059 Achieved : 93059 
Objective : 2 Cut 81000 Goal 46530 Achieved 46529 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 36 
Objective 1 Cut 186116 Goal : 93059 Achieved : 93058 
Objective : 2 Cut 81001 Goal 46530 Achieved 46530 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 37 
Objective 1 Cut 186117 Goal : 93059 Achieved : 93058 
Objective : 2 Cut 81001 Goal 46530 Achieved 46530 
Objective : 3 Cut 36247 Goal 27918 Achieved 27918 
Objective : 4 Cut 33663 Goal 18611 Achieved 18611 
Results from Pass 38 
Objective 1 Cut 186118 Goal : 93059 Achieved : 93059 
Objective 2 Cut 81001 Goal 46530 Achieved 46530 
Objective 3 Cut 36247 Goal 27918 Achieved 27918 
Objective 4 Cut 33663 Goal 18611 Achieved 18611 
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Annex - 4: Spatial compactness in the continuous and fuzzy 
cost models 

Spatial compactness after applying compactness function in the medium grid of 
continuous model 

Compactness 
Random Greatest 

Rr Rr Factor (Fe) Cost function 
h:m NP Cost function 

h:m NP 

25 7567741 0:05 86 7569272 0:05 94 
50 7624515 0:08 67 7626665 0:05 65 
100 7731711 0:10 44 7718051 0:10 45 
200 7734468 0:10 48 7848417 0:10 35 

B. Spatial compactness after applying compactness function in the medium grid 
of fuzzy model 

Compactness Random Greatest 
Factor (Fe) Cost Rr Np 

Cost Rr 
NP function h:m function h:m 

25 29653547 0:05 135 29649719 0:03 132 
50 29715049 0:06 104 29709458 0:06 105 
100 29830131 0:06 92 29829212 0:06 94 
200 30022380 0:08 75 30023073 0:06 85 

C. Spatial compactness after applying compactness function in the large grid of 
continuous model 

Compactness Random Greatest 
Factor (Fe) Cost Rr 

NP 
Cost Rr 

NP function h:m function h:m 
25 130913116 4:12 863 130903364 4:12 890 
50 132006416 4:11 546 132058112 4:11 548 
100 133579466 4:12 416 133629267 4:12 449 . 
200 133499573 4:12 444 135069677 4:11 324 

D. Spatial compactness after applying compactness function in the large grid of 
fuzzy model 

Compactness Random Greatest 
Factor (Fe) Cost Rr 

NP 
Cost Rr 

NP function h:m function h:m 
25 451927103 4:15 1941 451932116 4:14 1920 
50 453121323 4:14 1450 453116855 4:15 1426 
100 456034863 4:14 992 456172030 4:15 940 
200 460993790 4:15 605 460958519 4:15 615 
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